Схема осадок свайного фундамента
Библиографическая ссылка на статью:
Мельников В.А., Алексеев Н.С., Ионов К.И. Сравнительный анализ методик расчета осадки свайных фундаментов // Современные научные исследования и инновации. 2015. № 9. Ч. 1 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2015/09/57462 (дата обращения: 17.08.2021).
На современном этапе развития фундаментов одной из главных задач является повышение эффективности проектировочных решений, разработка экономически обоснованных и конкурентоспособных решений
В настоящее время большой размах приобретает строительство на слабых водонасыщенных грунтах, когда строители используют под объекты площадки, которые ранее признавались геологами невыгодными для возведения сооружений.
В сложных инженерно-геологических условиях свайный вариант зачастую оказывается единственно возможным видом фундаментов. Свайные фундаменты применятся в тех случаях, когда грунты основания представлены насыпью большой мощности, илистыми отложениями, связными грунтами в текучем и текуче-пластичном состоянии и т.п. [13, 15].
Так как затраты на устройство подземной части здания составляют до 25% от общей стоимости, снизить эти показатели позволяет применение более экономичных и индустриальных свайных фундаментов.
Важнейшим резервом повышения эффективности свайных фундаментов является совершенствование определения их осадок на стадии проектирования.
Сложность работы сваи в грунте делает невозможным создание математически строгой теории надежности расчета. Поэтому используются различные инженерные методики расчета. Используемая в настоящее время нормативная литература в области проектирования свайных фундаментов содержит недостаточно информации и позволяет получать неоднозначные результаты.
Целью данной работы является сравнение результатов расчета осадок свайных фундаментов здания каркасного типа в заданных геологических условиях. Параметры здания и геологический разрез приняты одинаковыми для того, чтобы выявить влияние различных теоретических подходов к расчету осадок в СНиП 2.02.03.-85 «Свайные фундаменты» и СП 24.13330.2011 «Свайные фундаменты» (актуализированная редакция).
2. Расчет несущей способности свай
Характеристики грунтов и мощности слоев, слагающих грунтовое основание заданного сооружения, представлены в таблице 1.
Расчеты проводятся по двум группам предельных состояний [2]:Будем рассматривать висячие железобетонные сваи, призматической формы, квадратного поперечного сечения с заостренным концом. При этом размеры поперечного сечения принимаем 40 х 40 см, длину сваи 13 м.
1) по несущей способности – по прочности материала свай и материала ростверка (ведется на основное сочетание расчетных нагрузок);
2) по деформациям – по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок (на основное сочетание нормативных нагрузок).
Сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия [6]:
, (1)
где N — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании);
F d — расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи;
— коэффициент условий работы, учитывающий повышение однородности грунтовых условий при применении свайных фундаментов, принимаемый равным 1,15 при кустовом расположении свай;
— коэффициент надежности по назначению (ответственности) сооружения, принимаемый равным 1,15;
— коэффициент надежности примем равным 1,4, т. к. несущая способность сваи определена расчетом.
Несущую способность F d , висячей забивной сваи, погружаемой без выемки грунта, работающей на сжимающую нагрузку, следует определять как сумму сил расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле [6]:
где c — коэффициент условий работы сваи в грунте, принимаемый c = 1;
R — расчетное сопротивление грунта под нижним концом сваи, принимаемое по таблице (табл. 7.2 [4]): R =5360 кПа;
A — площадь опирания на грунт сваи, м 2 , принимаемая равной площади поперечного сечения сваи: A =0,16 м 2 ;
u — наружный периметр поперечного сечения сваи, м: u =1,6 м;
f i — удельное сопротивление i-го слоя грунта основания на боковой поверхности сваи, принимаемое по таблице (табл. 7.3, [4]) в зависимости от глубины H i и вида грунта на этой глубине;
H i — глубина погружения средней точки i-го однородного участка грунта;
h i — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;
cR , cf — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта (табл. 7.4, [4]): .
Определим f i и и результаты сведём в таблицу 2:
Таблица 2
Источник
Определение осадки свайного фундамента, расчет осадки свайного фундамента
Статья расскажет о том, что такое осадка свайного фундамента, какие факторы на нее влияют, а также о том, как выполняется расчет осадки свайного фундамента.
Содержание статьи:
Осадка свайного фундамента – это перемещение свай под действием нагрузок и изменение их высотного уровня, возникающее в процессе их эксплуатации.
Как правило, причиной осадки становятся ошибки в расчетах восприимчивости фундамента к нагрузкам, допущенные на стадии проектирования. В результате в основании используются сваи с некорректными конструктивными параметрами: недостаточной длины или сечения (если речь идет о железобетонных конструкциях), с недостаточным диаметром или количеством лопастей (в случае с винтовыми конструкциями) и т.п.
Осадка может возникать под действием следующих факторов:
- недостаточная несущая способность грунта;
- значительные нагрузки на фундамент от массы здания, снегового и ветрового давления, эксплуатационных воздействий.
1. Расчет осадки свайно-винтового фундамента
Расчеты по деформациям свайного фундамента сводятся к определению осадки всего фундамента или отдельной сваи.
При расчете осадок группы свай необходимо учитывать их взаимное влияние. Данный расчет является весьма сложным, и задача решается с помощью трехмерного численного моделирования условного фундамента как анизотропного массива с учетом его конечной жесткости на сдвиг по вертикальным плоскостям.
Расчет осадки одиночных свай, прорезающих слой грунта, рассматривают как линейно-деформируемое полупространство, характеризуемое модулем сдвига G2 и коэффициентом Пуассона v2. При выполнении условии l/d > G1l/G2d > 1 (где l – длина сваи, м, d – наружный диаметр поперечного сечения ствола, м) осадку для винтовой сваи считают как для одиночной сваи с уширением пяты или сваи-стойки.
1.1. Расчет осадки одиночной сваи
Согласно СП 24.13330.2011 «Свайные фундаменты» расчет осадки одиночных свай, прорезающих слой грунта с модулем сдвига G1, МПа, коэффициентом Пуассона v1 и опирающихся на грунт, рассматриваемый как линейно-деформируемое полупространство, характеризуемое модулем сдвига G2 и коэффициентом Пуассона v2, допускается производить при выполнении требований подраздела 7.2 и при условии l/d>5; G1l/G2d>1 (где l – длина сваи, м, d – наружный диаметр поперечного сечения ствола, м) по формуле:
, (7.36)
db – диаметр уширения сваи;
N – вертикальная нагрузка, передаваемая на сваю, МН;
EA – жесткость ствола сваи на сжатие, МН;
A – площадь поперечного сечения сваи;
v – коэффициент Пуассона.
Коэффициент Пуассона для грунта (коэффициент поперечного расширения или коэффициент поперечной деформации или Poisson’s ratio) – это показатель деформируемости грунта, характеризующий отношение поперечных и продольных деформаций грунта (то есть отношение относительных поперечных деформаций к относительным продольным деформациям грунта).
При отсутствии экспериментальных данных, значения коэффициента Пуассона можно принять по п.5.4.7.5 ГОСТ 12248-96:
- для крупнообломочных грунтов равен 0,27;
- для песка составляет от 0,30 до 0,35 (в зависимости от плотности);
- для супеси составляет от 0,30 до 0,35 (в зависимости от плотности);
- для суглинков составляет от 0,35 до 0,37 (в зависимости от плотности);
- для твердой глины (при показателе текучести IL =0) составляет от 0,20 до 0,30 (в зависимости от плотности);
- для полутвердой глины (при показателе текучести IL от 0 до 0,25) составляет от 0,30 до 0,38 (в зависимости от плотности);
- для тугопластичной глины (при показателе текучести IL от 0,25 до 0,5) составляет от 0,38 до 0,45 (в зависимости от плотности);
- для мягкопластичной глины (при показателе текучести IL от 0,5 до 0,75) составляет от 0,38 до 0,45 (в зависимости от плотности);
- для текучепластичной глины (при показателе текучести IL от 0,75 до 1) составляет от 0,38 до 0,45 (в зависимости от плотности).
Меньшие значения коэффициента Пуассона необходимо применять при большей плотности грунта.
G – модуль сдвига, Мпа. Модулем сдвига называется характеристика деформируемости, определяемая отношением приложенного к грунту касательного напряжения к углу сдвига. Этот показатель используется при расчете устойчивости сооружений и массивов грунтов, давления грунтов на ограждения и подземные сооружения, при расчете осадок под свайными фундаментами.
Характеристики G1 и v1 принимаются осредненными для всех слоев грунта в пределах глубины погружения сваи, a G2 и v2 – в пределах 0,5 l, т.е. на глубинах от l до 1,5l от верха свай, при условии, что под нижними концами свай отсутствуют глинистые грунты текучей консистенции, органоминеральные и органические грунты.
Модуль сдвига грунта G = E0 / 2(1+v) допускается принимать равным 0,4E0, а коэффициент kv равным 2,0 (где E0 – модуль общей деформации).
Таким образом, расчет осадки свайного фундамента – достаточно сложная процедура, которая требует применения специальных знаний. Пренебрежение же данными расчетами может привести к негативным последствиям в процессе эксплуатации здания/сооружения.
Источник
Расчет осадки свайного ленточного фундамента
Осадка определяется для условного (приведенного) фундамента с шириной подошвы bred и глубиной заложения hred (см. рис.19).
Рис. 19. Схема определения границ условного фундамента
при расчете осадок свайных фундаментов
Контуры условного свайного фундамента определяют следующим образом: внизу – плоскостью АВ, проходящей через нижние концы свай, с боков – вертикальными плоскостями АС и ВД, проходящими при вертикальных сваях от их граней на расстоянии
где: φII , mt – средне взвешенное расчетное (по деформациям) значение угла внутреннего трения толщи грунтов в пределах длины сваи (в градусах):
здесь: φII . i и hi – принимаются по данным геологического профиля.
Среднее давление на подошву условного фундамента
где: qf – нагрузка от ростверка и стен до обреза фундамента, кН/м;
qs – нагрузка от свай, кН/м;
qq – нагрузка от грунта в пределах условного фундамента, кН/м.
Расчет осадки свайных фундаментов производят методом элементарного суммирования или методом линейно деформируемого слоя.
Расчетная осадка фундамента S не должна превышать предельной S и для проектируемого сооружения, которая для многоэтажных бескаркасных зданий с несущими стенами из панелей, крупных блоков или кирпичной кладки без армирования не должна превышать S и = 10 см.
Производим расчет фундамента с однорядным размещением сваи, как более экономичного по расходу бетона на изготовление ростверка.
Напряжения от собственного веса грунта определены в пункте 5.3.
Используем их значения при построении эпюры природного давления и вспомогательной эпюры 0,2 для определения границы сжимаемой толщи. Природное давление на подошву условного фундамента на отметке — 7.10 составит кПа
Осредненное значение угла внутреннего трения для толщи грунта, пронизываемой сваей
φII , mt = ∑ φII . i ‧ hi /∑ hi ,= (29×4,1+14× 2.1)/(4,1+2,1 ) = 23,3 о
Высота условного фундамента до низа ростверка м.
Ширина условного фундамента
bred = d +2 h × tg ( j mt /4)= 0.4+2× 5.7× 0.09 =1.4м
Нагрузка от ростверка и стен подвала до обреза фундамента
кН/м
Нагрузка от свай, приходящихся на 1м фундамента кН/м
Нагрузка от грунта в объеме САВД на 1м фундамента
кН/м
Давление на подошву условного фундамента
Дополнительное давление на подошву условного фундамента
кПа
Соотношение сторон ленточного фундамента
Основание под концом сваи разбиваем на слои толщиной
м, принимаем 0,5 м
Осадка фундамента, рассчитанная методом послойного суммирования, составляет см
Расчет осадки ленточного свайного фундамента
Толщина слоя, м | Расстояние от подошвы до слоя Ƶ | ζ = | α | Давление на слой σzp= α‧Pɑ,кПа | Среднее давление σƶр,i, кПа | Еi, кПа | Осадка элементарного слоя, мм Si=β |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0 | 0 | 0 | 1 | 332 | |||
0,5 | 0,5 | 0,87 | 0,850 | 282 | 307 | 30000 | 6,39 |
0,5 | 1,0 | 1,05 | 0,602 | 199 | 244 | 3,62 | |
0,5 | 1,5 | 2,62 | 0,400 | 133 | 166 | 1,84 | |
0,5 | 2,0 | 3,5 | 0,350 | 116 | 124,5 | 1,49 | |
0,5 | 2,5 | 4,38 | 0,260 | 86 | 101 | 1,20 | |
0,5 | 3,0 | 5,26 | 0,247 | 79 | 82,5 | 1,06 | |
0,5 | 3,5 | 6,1 | 0,202 | 67 | 73 | 1,00 | |
0,5 | 4,0 | 7,0 | 0,180 | 60 | 63,5 | 0,9 | |
0,5 | 4,5 | 7,89 | 0,154 | 51 | 55 | 0,81 | |
0,5 | 5,0 | 8,7 | 0,145 | 48 | 49,5 | 0,71 | |
0,5 | 5,5 | 89,6 | 0,132 | 43 | 45,5 | 0,39 | |
0,5 | 6,0 | 910,5 | 0,115 | 38 | 40,5 | 0,31 |
ΣSi = 19,1мм, что меньше допустимой осадки = 100мм
Рис. 20. Расчетная схема осадки свайного фундамента
Масштаб: размеров — 1 см = 1 м; давлений — 1 см = 50 кПа
Расчет осадки двухрядного свайного фундамента производится по приведенной методологии с учетом в ширине подошвы условного массивного фундамента АВСД минимального расстояния а между сваями.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Источник