- ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЁТ СТЕНЫ — полнотелый силикатный кирпич 640 мм.
- Теплотехнический расчёт
- Теплотехнический расчет стены.
- Простые правила тёплой стены
- Расчёт теплового сопротивления стен из различных материалов
- Расчёт теплового сопротивления стен
- Теплозащита наружных стен зданий с облицовкой из кирпичной кладки
- Определения (дефиниции) основных характеристик теплозащиты
- Расчет характеристик теплозащиты стен с облицовкой из кирпичной кладки
- Методика расчета
- Расчет дополнительных теплопотерь от теплопроводных включений
- Литература
ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЁТ СТЕНЫ — полнотелый силикатный кирпич 640 мм.
| шуба для дома | утепление стен изнутри | утеплённая стена выглядит так | утепление стен зимой | ||
теплотехнический расчёт | плесень на стенах | ВНИМАНИЕ! не попадитесь |
Теплотехнический расчёт
Теплотехнический расчет стены.
Цель теплотехнического расчета — вычислить толщину утеплителя при заданной толщине несущей части наружной стены, отвечающей санитарно-гигиеническим требованиям и условиям энергосбережения. Иными словами – у нас есть наружные стены толщиной 640 мм из силикатного кирпича и мы собираемся их утеплить пенополистиролом, но не знаем какой толщины необходимо выбрать утеплитель, чтобы были соблюдены строительные нормы.
Теплотехнический расчет наружной стены здания выполняется в соответствии со СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».
Теплотехнические показатели используемых строительных материалов (по СНиП II-3-79*)
№ по схеме
Материал
Характеристика материала в сухом состоянии
Расчетные коэффициенты (при условии эксплуатации по приложению 2) СНиП II-3-79*
Коэффициент теплопроводности λ, Вт/м*°С
Теплоусвоения (при периоде 24 ч)
S, м 2 *°С/Вт
Цементно-песчаный раствор (поз. 71)
Кирпичная кладка из сплошного кирпича силикатного (ГОСТ 379-79) на цементно-песчаном растворе (поз. 87)
Пенополистирол (ГОСТ 15588-70) (поз. 144)
Цементно-песчаный раствор – тонкослойная штукатурка (поз. 71)
1- штукатурка внутренняя (цементно-песчаный раствор) — 20 мм
2- кирпичная стена (силикатный кирпич) — 640 мм
3- утеплитель (пенополистирол)
4- тонкослойная штукатурка (декоративный слой) — 5 мм
При выполнении теплотехнического расчёта принят нормальный влажностный режим в помещениях — условия эксплуатации («Б») в соответствии с СНиП II-3-79 т.1 и прил. 2, т.е. теплопроводность применяемых материалов берём по графе «Б».
Вычислим требуемое сопротивление теплопередаче ограждения с учетом санитарно-гигиенических и комфортных условий по формуле:
где tв – расчётная температура внутреннего воздуха °С, принимаемая в соответствии с ГОСТ 12.1.1.005-88 и нормами проектирования
соответствующих зданий и сооружений, принимаем равной +22 °С для жилых зданий в соответствии с приложением 4 к СНиП 2.08.01-89;
tn – расчётная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92 по СНиП 23-01-99 для г. Ярославль принимается равной -31°С;
n – коэффициент, принимаемый по СНиП II-3-79* (таблица 3*) в зависимости от положения наружной поверхности ограждающей конструкций по отношению к наружному воздуху и принимается равным n=1;
Δ t n – нормативный и температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции – устанавливается по СНиП II-3-79* (таблица 2*) и принимается равным Δ t n =4,0 °С;
αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.
R0 тр = (22- (-31))*1 / 4,0* 8,7 = 1,52
Определим градусо-сутки отопительного периода по формуле:
где tв — то же, что и в формуле (1);
tот.пер — средняя температура, °С, периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;
zот.пер — продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;
Определим приведенное сопротивление теплопередаче Rо тр по условиям энергосбережения в соответствии с требованиями СНиП II-3-79* (таблица 1б*) и санитарно-гигиенических и комфортных условий. Промежуточные значения определяем интерполяцией.
Сопротивление теплопередаче ограждающих конструкций (по данным СНиП II-3-79*)
Здания и помещения
Градусо-сутки отпительного периода, ° С*сут
Приведенное сопротивление теплопередаче стен, не менее R0 тр (м 2 *°С)/Вт
Общественные административные и бытовые, за исключением помещений с влажным или мокрым режимом
Сопротивление теплопередаче ограждающих конструкций R(0) принимаем как наибольшее из значений вычисленных ранее:
R0 тр = 1,52 тр = 3,41, следовательно R0 тр = 3,41 (м 2 *°С)/Вт = R0.
Запишем уравнение для вычисления фактического сопротивления теплопередаче R0 ограждающей конструкции с использованием формулы в соответствии с заданной расчетной схемой и определим толщину δx расчётного слоя ограждения из условия:
где δi – толщина отдельных слоёв ограждения кроме расчётного в м;
λi – коэффициенты теплопроводности отдельных слоев ограждения (кроме расчётного слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;
δx – толщина расчётного слоя наружного ограждения в м;
λx – коэффициент теплопроводности расчётного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;
αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.
αн — коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции принимается по по СНиП II-3-79* (таблица 6*) и принимается равным αн = 23 Вт/м 2 *°С.
Термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев.
Для наружных стен и перекрытий толщина теплоизоляционного слоя ограждения δ x рассчитывается из условия, что величина фактического приведённого сопротивления теплопередаче ограждающей конструкции R 0 должна быть не менее нормируемого значения R0 тр , вычисленного по формуле (2):
Раскрывая значение R 0 , получим:
Исходя из этого, определяем минимальное значение толщины теплоизоляционного слоя
δx = 0,041*(3,41- 0,115 — 0,022 — 0,74 — 0,005 — 0,043)
Принимаем в расчёт толщину утеплителя (пенополистирол) δx = 0,10 м
Определяем фактическое сопротивление теплопередаче рассчитываемых ограждающих конструкций R 0 , с учётом принятой толщины теплоизоляционного слоя δx = 0,10 м
Теплоизоляция (утеплитель пенополистирол с коэффициентом теплопроводности 0,041) толщиной 100 мм при толщине несущей части наружной стены из силикатного кирпича толщиной 640 мм на цементно–песчаном растворе соответствует санитарно-гигиеническим требованиям и условиям энергосбережения.
При эксплуатации стены без утеплителя «точка росы» возникает в толще стены. Стена просто отсыревает и не аккумулирует тепло. Поверхность стены в помещении при отрицательной температуре — холодная, что приводит к образованию на стене плесени и конденсата.
При эксплуатации стены с утеплителем «точка росы» не возникает в стене. В некоторых случаях — при повышении влажности внутри помещения и понижении температуры снаружи точка росы появится в утеплителе ближе к наружной стороне — со временем выветривается.
Стена остаётся сухой всегда. Поверхность стены в помещении при отрицательной температуре — тёплая, чуть ниже комнатной температуры воздуха.
А вот что будет происходить в стене при внутреннем утеплении .
При внутреннем утеплении стены «точка росы» образуется сразу после утеплителя. В этом месте (за утеплителем) всегда будет плесень! Если утеплитель минераловатные плитты, то он будет впитывать всю образующуюся влагу как губка. В помещении повышается влажность.
Так же вы можете выполнить самостоятельно теплотехнический расчёт онлайн
© сайт квалифицированных рабочих, 2010 — 2020 ooo_remo@mail.ru
Утепление стен квартир, утепление стен домов в Ярославле
Источник
Простые правила тёплой стены
Желаемое и возможное тепло
В общем случае применяют внешнее утепление. Внутреннее не только менее эффективно, но и противопоказано для дома круглогодичного проживания. Вопрос выбора утеплителя также сложен и неоднозначен.
Расчёт теплового сопротивления стен из различных материалов
В России в настоящее время используется поэлементное нормирование сопротивления теплопередаче, то есть для каждого элемента наружных ограждающих конструкций нормами задаётся минимально допустимое значение: для стен, окон, крыш и перекрытий.
В Европейских странах и Америке принят немного другой подход к экономии тепла, по удельным теплопотерям. Его смысл в том, что выбор вида ограждающих конструкций увязан с требуемым значением удельной потребности в тепловой энергии на отопление здания. Попросту говоря, нормируются затраты на отопление одного квадратного метра дома. А каким способом будет достигнута эта величина, остаётся на усмотрении застройщика. Именно поэтому, а ещё за счёт более высоких среднегодовых температур, в этих странах в моде большие площади остекления.
Однако нужно учесть, что при полном остеклении фасадов применяются специальные конструкции стен с редкими для нас системами отопления. Между наружной и внутренней стеклянной оболочкой подаётся тёплый воздух – в таком варианте и в их климате это успешно работает. Однако, в наших условиях, потери тепла непременно серьёзно возрастают и комфорт проживания в доме со стеклянными стенами довольно сомнителен. Ведь таких оконных конструкций, которые имели хотя бы приближенную к обычным стенам теплозащиту, пока не придумано.
Расчёт теплового сопротивления стен
Чтобы предельно точно, коэффициент теплопроводности показывает количество тепла, проходящее за 1 час через 1 м 2 поверхности испытуемого материала толщиной в 1 м при разнице температур поверхностей этого материала равных 1°С. Как видим, реальная толщина материала не влияет на коэффициент теплопроводности. Однако эта толщина учитывается так называемым коэффициентом теплопередачи.
Принцип расчёта следующий: исходя из климатических условий региона нормируется величина значения сопротивления теплопередаче ограждающих конструкций R. Для климатических условий Челябинска R(м2°С/Вт) равен: для наружных стен 3,42; для чердачных перекрытий и перекрытий над неотапливаемым подвалом 4,5; для кровли 5,09. Единственное, что следует отметить, так это то, что подобные параметры в реальных условиях практически не выполняются. Так что есть, к чему стремиться.
Расчёт однослойных конструкций не представляет сложностей. Однако поскольку сегодня большинство ограждающих конструкций многослойные, требуется учесть сопротивление теплопередаче всех слоёв. Для этого требуется знать толщину и коэффициент теплопроводности каждого составляющего материала. А затем просуммировать все вычисленные значения. Можно не учитывать слои внутренней и наружной штукатурок, так как доказано, что тонкие слои материала с высоким коэффициентом теплопроводности на тепловое сопротивление конструкций заметного влияния не оказывают.
Источник
Теплозащита наружных стен зданий с облицовкой из кирпичной кладки
В. Г. Гагарин, доктор техн. наук, профессор, НИИСФ РААСН;
О. И. Пономарев, канд. техн. наук, ЦНИИСК им. В. А. Кучеренко
Современные стеновые ограждающие конструкции в массовом строительстве полностью изменились за последние 15 лет. В последние годы осуществляется строительство монолитных зданий с навесными стенами с облицовкой из кирпичной кладки. В связи с повреждением стен ряда эксплуатируемых зданий подобного типа зимой 2008 года были проведены натурные обследования более 50 объектов. В ходе работы были исследованы теплозащитные свойства этих стен. Результаты этого исследования приводятся в статье.
Основной причиной, вызвавшей появление новых ограждающих конструкций, стало введение повышенных требований к теплозащите с целью снижения затрат на отопление зданий. Несущие конструкции рассматриваемых зданий, в том числе перекрытия, выполняются из монолитного железобетона, а стены монтируются на межэтажные перекрытия. Основные преимущества стен с облицовкой из кирпичной кладки, по сравнению со стенами с навесными теплоизоляционными фасадными системами, заключаются в следующем:
• Привычный для населения вид кирпичных стен, которые прекрасно себя зарекомендовали в течение многих веков.
• Хорошая ликвидность квартир в таких домах.
• Сравнительно невысокая стоимость.
Внедрению рассматриваемых ограждающих конструкций не предшествовала стадия научных исследований, экспериментального стро-ительства, разработка специальных нормативных документов для проектирования, как это было принято в советское время. В результате все построенные здания со стенами с облицовкой из кирпичной кладки фактически являются экспериментальными. Результаты этого незапланированного гигантского эксперимента предстоит изучать и осмысливать еще много лет.
При проектировании ограждающих конструкций их теплофизические свойства, в том числе теплозащита, проверяются расчетом не полностью, а зачастую и вообще не проверяются. Негласно считается, что в массовом строительстве достигнут уровень теплозащиты, нормируемый в [1]. Иногда предлагается провести дальнейшее повышение этого уровня.
Далее рассмотрены теплозащитные свойства указанных стен, поскольку именно эти свойства послужили причиной появления и применения данных конструкций.
Определения (дефиниции) основных характеристик теплозащиты
Прежде чем перейти к основному содержанию статьи, представляется необходимым привести определение основной характеристики теплозащиты ограждающей конструкции – приведенного сопротивления теплопередаче и вспомогательных характеристик. Эта необходимость обусловлена отсутствием последовательной системы определений в нормативных документах и в учебниках.
Приведенным сопротивлением теплопередаче фрагмента ограждающей конструкции называется физическая величина численно равная отношению перепада температур воздуха по разные стороны ограждающей конструкции к осредненной по площади фрагмента плотности потока теплоты через данный фрагмент конструкции при стационарных условиях теплопередачи. Данное определение эквивалентно следующему: приведенным сопротивлением теплопередаче фрагмента ограждающей конструкции называется физическая величина численно равная перепаду температур воздуха по разные стороны ограждающей конструкции, при котором в стационарных условиях теплопередачи осредненная по площади фрагмента плотность потока теплоты через данный фрагмент конструкции, равна 1 Вт/м 2 .
Условным сопротивлением теплопередаче ограждающей конструкции называется приведенное сопротивление теплопередаче ус-ловной многослойной ограждающей конструкции, в которой отсутствуют теплопроводные включения и слои которой расположены перпендикулярно направлению потока теплоты через конструкцию.
Коэффициентом теплотехнической однородности фрагмента ограждающей конструкции называется величина, обратная отношению потока теплоты через рассматриваемый фрагмент конструкции к потоку теплоты через условную ограждающую конструкцию той же площади, что и рассматриваемый фрагмент.
Сформулированные определения можно уточнять и совершенствовать, например, в отношении уточнения площади, по которой осуществляется осреднение потока теплоты. Но в рамках данной статьи эти определения являются достаточными. Формулы для расчета приведенного сопротивления теплопередаче конструкций, используемые в статье, вытекают непосредственно из этих определений. Например, из сопоставления этих определений непосредственно следует, что коэффициент теплотехнической однородности равен отношению приведенного к условному сопротивлению теплопередаче ограждающей конструкции. Важно, что эти определения не опираются на понятие термического сопротивления, это позволяет избежать неопределимого понятия «приведенное термическое сопротивление», использование которого является логической ошибкой и затрудняет проведение расчетов. Кроме того, приведенное сопротивление теплопередаче определяется через поток теплоты и разность температур, а не через просто «сопротивление теплопередаче» и коэффициент теплотехнической однородности ограждающей конструкции, что также вносит путаницу в методику проведения расчетов.
Важной особенностью «приведенного сопротивления теплопередаче» является то, что оно относится к определенному фрагменту ограждающей конструкции. Если этот фрагмент не указан, то понятие, вообще говоря, лишено смысла. Однако обычно из контекста ясно, какой фрагмент имеется в виду. Если же и из контекста не видно, какой фрагмент имеется в виду, то термин «приведенное сопротивление теплопередаче стены» следует относить к совокупности всех стен здания. Именно так приходится понимать использование этого термина в СНиП [1] и в других документах.
Наконец, можно заметить, что понятие просто «сопротивление теплопередаче» ограждающей конструкции является лишним и практически может не использоваться. Оно было введено в учебниках, например, в книге К. Ф. Фокина [2] в то время, когда конструкций с существенными теплопроводными включениями было очень мало и понятие «приведенное сопротивление теплопередаче» отсутствовало. Возможно, что со временем из названия «приведенное сопротивление теплопередаче» исчезнет слово «приведенное», но смысл этого термина сохранится.
В настоящее время приведенное сопротивление теплопередаче фактически является единственной характеристикой теплозащиты ограждающей конструкции. Условное сопротивление теплопередаче характеризует несуществующую конструкцию его можно использовать в методических целях, но как характеристика теплозащиты оно непригодно. Коэффициент теплотехнической однородности, также не являясь показателем теплозащиты, характеризует конструкцию с точки зрения эффективности использования в ней теплоизоляционных материалов. Этот коэффициент зависит от того, какая конструкция принята в качестве условной. В связи с этим для определения теплозащиты ограждающей конструкции следует непосредственно рассчитывать приведенное сопротивление теплопередаче исходя из определения (дефиниции) этой величины, а затем в качестве справочной величины рассчитывать коэффициент теплотехнической однородности конструкции, а не наоборот, как часто делается. Именно такой порядок расчетов использован в настоящей статье.
Расчет характеристик теплозащиты стен с облицовкой из кирпичной кладки
Методика расчета
Методика расчета приведенного сопротивления теплопередаче при помощи расчета двухмерных или трехмерных температурных полей конструкции и ее узлов следует непосредственно из данного выше определения этого понятия. В этой методике нет ничего нового, однако практика показывает, что если ее и применяют, то далеко не всегда правильно.
Согласно данному выше определению, приведенное сопротивление теплопередаче фрагмента ограждающей конструкции, R пр о, равно:
(1)
где R пр о – приведенное сопротивление теплопередаче фрагмента ограждающей конструкции, м 2 •°С/Вт;
tв, tн – температуры внутреннего и наружного воздуха, принятые для расчетов, °С;
Q – мощность потока теплоты по глади конструкции (через условную конструкцию), Вт;
Qдоп,i – дополнительная мощность потока теплоты обусловленная i-ым теплопроводным включением, Вт;
F – площадь фрагмента ограждающей конструкции, м 2 .
Величины Qдоп,i определяются на основе расчета температурных полей узлов конструкций. Формулу (1) целесообразно привести к виду, в котором используются не мощности потока теплоты, а плотности теплового потока q и qдоп.i:
(2)
(3)
Величины q и qдоп.i являются удобными с точки зрения сравнения вклада различных теплопроводных включений. Они характеризуют теплопотери с 1 м 2 конструкции, обусловленные соответствующим теплопроводным включением. Поэтому они могут называться удельными теплопотерями, соответственно, по глади конструкции и дополнительными. Расчет удельных теплопотерь иллюстрируется примером в следующем разделе. По известным значениям q и qдоп.i вычисляется коэффициент теплотехнической однородности фрагмента конструкции, который в силу вышеприведенного определения этой характеристики и формул (3) равен:
(4)
Величины qдоп.i/q являются относительными дополнительными теплопотерями. Они характеризуют доли теплопотерь, обусловленных соответствующими теплопроводными включениями от теплопотерь по глади конструкции. Формулы (2) и (4) являются удобной основой для разработки инженерного метода учета того или иного теплопроводного включения при расчете Ro пр конструкции. Но в рамках данной статьи это направление не развивается.
Расчет дополнительных теплопотерь от теплопроводных включений
На рис. 1 приведены принципиальные конструктивные схемы трех вариантов рассматриваемых стен. Эти конструктивные схемы взяты из проектов построенных зданий. Характеристики слоев и материалов конструкций, принятые в расчетах, приведены в табл. 1.
Таблица 1 Характеристики слоев и материалов стен с облицовкой из кирпичной кладки, принятые для расчетов | ||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||
Таблица 2 Удельные теплопотери по глади и через теплопроводные включения стены с облицовкой из кирпичной кладки по рис. 2 | ||||||||||||||||||||||||
| ||||||||||||||||||||||||