Сопротивление теплоотдаче наружных стен

Содержание
  1. Теплотехнический расчёт стены
  2. Теплотехнический расчёт однородной наружной стены здания
  3. Исходные данные
  4. Определение требуемого сопротивления теплопередаче
  5. Определение приведённого сопротивления теплопередаче стены
  6. Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции
  7. Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи
  8. Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
  9. Теплотехнический расчёт наружной стены здания с учётом неоднородности
  10. Исходные данные
  11. Определение удельных потерь теплоты кладочной сетки
  12. Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи
  13. Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
  14. Сравнение результатов расчёта
  15. Теплотехнический расчёт наружных стен: методика
  16. Методика расчета приведенного сопротивления теплопередаче наружных стен зданий из газобетонных блоков

Теплотехнический расчёт стены

Теплотехнический расчёт однородной наружной стены здания

Исходные данные

Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:

№ слоя Слой δ, мм λ, Вт/(м °С) γ, кг/м 3
1 Кладка из кирпича керамического пустотного 120 0.64 1300
2 Минераловатный утеплитель 150 0.039 60
3 Кладка из кирпича керамического полнотелого 380 0.81 1600
4 Штукатурка ц.п. 20 0.91 1800

Определение требуемого сопротивления теплопередаче

Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:

Читайте также:  Текстура кирпичной стены png

где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].

Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]

где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]

Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,

Определение приведённого сопротивления теплопередаче стены

где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;

Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:

δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.

Расчетное значение сопротивления теплопередаче, R0:

R0 > Rreq — Условие выполняется

Толщина конструкции, ∑t =675 мм;

Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Значение выразим из формулы (5.4) СП 50.13330.2012

Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.

Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи

Схема ограждающей конструкции:

Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м

Шаг 1 геометрия

Шаг 2 Создание элементов конвекции

Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.

Шаг 3 характеристики материалов

В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.

Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);

Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.

Шаг 4 Внешняя нагрузка

Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.

Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Теплотехнический расчёт наружной стены здания с учётом неоднородности

Исходные данные

Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.

Определение приведённого сопротивления теплопередаче с учётом неоднородностей

Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр 0, (м 2 *°C)/Вт, следует определять по формуле:

где R усл 0 — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;

где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);

Определение удельных потерь теплоты кладочной сетки

Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.

Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м

Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015

Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м

dут, мм λ0 = 0,2 λ0 = 0,6 λ0 = 1,8
50 0,005 0,008 0,011
80 0,005 0,007 0,009
100 0,004 0,007 0,008
150 0,004 0,005 0,006

Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м

dут, мм λ0 = 0,2 λ0 = 0,6 λ0 = 1,8
50 0,018 0,031 0,043
80 0,018 0,028 0,035
100 0,017 0,026 0,031
150 0,015 0,021 0,024

Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ0, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ0 = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.

Потери теплоты по таблице Г.42:

Потери теплоты по таблице Г.43:

Итоговое значение потерь теплоты:

Суммарная протяжённость линейных неоднородностей Σlj = 2 м.

Подставив полученные значения в формулу (Е.1), получим:

Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи

Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.

Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Сравнение результатов расчёта

Сравнение будем выполнять в табличной форме:

Источник

Теплотехнический расчёт наружных стен: методика

Нормами установлены три показателя тепловой защиты здания:

а) приведенное сопротивление теплопередаче отдельных элементов ограждающих конструкций здания;

б) санитарно-гигиенический, включающий температурный перепад между температурами внутреннего воздуха и на поверхности ограждающих конструкций и температуру на внутренней поверхности выше температуры точки росы;

в) удельный расход тепловой энергии на отопление здания, позволяющий варьировать величинами теплозащитных свойств различных видов ограждающих конструкций зданий с учетом объемно-планировочных решений здания и выбора систем поддержания микроклимата для достижения нормируемого значения этого показателя.

Требования тепловой защиты здания будут выполнены, если в жилых и общественных зданиях будут соблюдены требования показателей «а» и «б» либо «б» и «в». В зданиях производственного назначения необходимо соблюдать требования показателей «а» и «б».

Если в результате расчета удельный расход тепловой энергии на отопление здания окажется меньше нормируемого значения, то допускается уменьшение сопротивления теплопередаче отдельных элементов ограждающих конструкций здания (светопрозрачных согласно примечанию 4 к таблице 4) по сравнению с нормируемым по таблице 4, но не ниже минимальных величин , определяемых по формуле (3.16) для стен групп зданий, указанных в поз.1 и 2 таблицы 4, и по формуле (3.17) — для остальных ограждающих конструкций:

Нормируемые значения сопротивлений теплопередаче для стен жилых и общественных зданий Rreq устанавливается в зависимости от градусо-суток отопительного периода (далее по тексту, — ГСОП) по следующей зависимости:

где a, b — коэффициенты, численные значения которых приведены в таблице 4 СНиП 23-02-2003:

Здания и помещения, коэффициенты a и b. Стен Покрытий и перекрытий над проездами Перекрытий чердачных, над неотапливаемыми подпольями и подвалами Окон и балконных дверей, витрин и витражей Фонарей с вертикальным остеклением
1 3 4 5 6 7
1 Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития
a

b

0,00035 0,0005 0,00045 0,000025
1,4 2,2 1,9 0,25
2 Общественные, кроме указанных выше, административные и бытовые, производственные и другие здания и помещения с влажным или мокрым режимом
a

b

0,0003 0,0004 0,00035 0,00005 0,000025
1,2 1,6 1,3 0,2 0,25
3 Производственные с сухим и нормальным режимами
a

b

0,0002 0,00025 0,0002 0,000025 0,000025
1 1,5 1 0,2 0,15
Примечания

Dd — градусо-сутки отопительного периода, °С·сут, для конкретного пункта;

Градусо-сутки отопительного периода Dd, °С·сут, определяют по формуле: где – расчетная средняя температура внутреннего воздуха здания, °С, принимаемая для расчета ограждающих конструкций:

  • для группы зданий по поз.1 таблицы 4 – по минимальным значениям оптимальной температуры соответствующих зданий по ГОСТ 30494 (в интервале 20-22 °С),
  • для группы зданий по поз.2 таблицы 4 – согласно классификации помещений и минимальных значений оптимальной температуры по ГОСТ 30494 (в интервале 16-21 °С)
  • для группы зданий по поз.3 таблицы 4 – по нормам проектирования соответствующих зданий;

, – средняя температура наружного воздуха, °С, и продолжительность, сут, отопительного периода, принимаемые по СНиП 23-01 для периода со средней суточной температурой наружного воздуха не более 10 °С — при проектировании лечебно-профилактических, детских учреждений и домов-интернатов для престарелых, и не более 8 °С — в остальных случаях.

Наименование городов Продолжительность отопительного периода Средняя температура наружного воздуха на отопительный период Градусо-сутки отопительного периода( ГСОП) Поэлементный подход Комплексный подход
Требуемое по ГСОП Минимально допустимое
Кировская область
Вятка 231 -5,4 5867,4 3,46 2,18
Нагорное 239 -5,8 6166,2 3,56 2,25
Савали 220 -5,7 5654 3,38 2,13
Ленинградская область
Свирица 228 -2,9 5221,2 3,23 2,04
Тихвин 227 -2,8 5175,6 3,22 2,03
Санкт-Петербург 220 -1,8 4796 3,08 1,95
Московская область
Дмитров 216 -3,1 4989,6 3,15 1,99
Кашира 212 -3,4 4960,8 3,14 1,98
Москва 214 -3,1 4943,4 3,14 1,98
Республика Дагестан
138 3,7 2249,4 2,19 1,38
Махачкала 148 2,7 2560,4 2,3 1,45
Краснодарский край
Краснодар 149 2 2682 2,34 1,48
Сочи 72 6,4 979,2 1,75 1,11
Тихорецк 158 1,1 2986,2 2,45 1,55
Ростовская область
184 -2,1 4066,4 2,83 1,79
Ростов-на-дону 171 -0,6 3522,6 2,64 1,67
Тагонрог 167 -0,4 3406,8 2,6 1,64
Республика Северная Осетия
Владикавказ 174 0,4 3410,4 2,6 1,64
Cтавропольский край
Арзгир 163 0,1 3243,7 2,54 1,61
Ставрополь 168 0,9 3208,8 2,53 1,6
Чеченская республика
160 0,9 3056 2,47 1,56

Пример . Требуется определить нормируемое значение сопротивления теплопередаче R req 0 (при поэлементном подходе), R req min (при комплексном подходе) стен жилого здания, проектируемого в г. Краснодар.

расчетная средняя температура внутреннего воздуха в жилых помещениях здания t int =20 °С (по табл. 1 ГОСТ 30494);

средняя за отопительный период температура наружного воздуха для г. Краснодар t ht = 2°С (по табл. 1* СНиП 23-0l);

продолжительность отопит. периода z ht =149 сут (по табл. 1* СНиП23-01).

Определение нормируемого сопротивления теплопередаче стен: Градусо-сутки отопительного периода (ГСОП):

Dd = (t int — t ht )*z ht = (20 — (2)) • 149 = 2682 ( o C • сут).

Нормируемое сопротивление теплопередаче стен жилого здания: R req = a*D + b = 0,00035• 2682 +1,4 = 2,346 (м2 • o C/Вт).

Нормируемое минимально допустимое значение сопротивления теплопередаче стен жилого здания Rmq n : R min =0,63*R req =0,63*2,34=1,48(м2 • o C/Вт)

Методика расчета приведенного сопротивления теплопередаче наружных стен зданий из газобетонных блоков

Для производственных зданий с избытками явной теплоты более 23 Вт/м и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных) R req , м ·°С/Вт, следует принимать не менее значений, определяемых по формуле

В наружных стенах, где применяются газобетонные блок и, приведенное сопротивление теплопередаче R0[м2°С/Вт] определяется по формуле:

  • = 8.7 [Вт/м2°С] — коэффициент теплоотдачи внутренней поверхности наружной стены, определяемый по СНиП 23-02;
  • = 23 [Вт/м2°С] — коэффициент теплоотдачи наружной поверхности стены для зимних условий;
  • r — коэффициент теплотехнической однородности кладки стен из газобетонных блоков с учетом влияния швов кладки;
  • R k =R гб — термическое сопротивление однослойной стены из газобетонных блоков [м2 о С/Вт];
  • R k =R +∑R — то же для многослойной стены [м2 о С/Вт] (например, состоящей из последовательно расположенных газобетонных блоков, утеплителя и облицовки).

Термическое сопротивление однородного слоя определяется по формуле^

  • δ – толщина стены (слоя) [m]
  • λ — расчетный коэффициент теплопроводности материала, из которого выполнен рассматриваемый слой [Вт/м°С].

Расчетный коэффициент теплопроводности λ зависит от марки блоков по плотности (D), равновесной влажности стены и вида кладочного раствора. Численные значения коэффициентов теплопроводности λ для изделий из автоклавного газобетона ГСУЛ приведены в таблице 1.1.

Расчетные теплотехнические показатели ячеистых бетонов автоклавного твердения (по ГОСТ 31359):

№ п.п. Материал Характеристика
материала в сухом состоянии
Расчетные коэффициtнты (при условиях эксплуатации)
Плотность,ρ кг/м Удельная теплоемкость, с0, кДж/кг*0С Коэфф. теплопроводности , λ0, Вт/м*0С Массового отношения влаги в материале, ω
%
Теплопроводности, λ, Вт/м*0С Теплоусвоения s, ( при периоде 24 ч), Вт/м2*0С Паропроницаемости,µ, мг/м**ч*Па
А Б А Б А Б АБ
1 2 3 4 5 6 7 8 9 10 11 12
1 Ячеистый бетон автоклавного твердения 600 0,84 0,14 4 5 0,16 0,183 2,66 2,9 0,16
2 -//- 500 0,84 0,12 4 5 0,14 0,147 2,28 2,37 0,2
3 -//- 450 0,84 0,108 4 5 0,13 0,132 2,05 2,13 0,21
4 -//- 400 0,84 0,096 4 5 0,11 0,117 1,82 1,89 0,23
5 -//- 350 0,84 0,084 4 5 0,1 0,103 1,63 1,66 0,25
6 -//- 300 0,84 0,072 4 5 0,08 0,088 1,39 1,42 0,26

1) расчетные значения коэффициента теплоусвоения s (при периоде 24 ч) материала в конструкции вычислены по формуле:

2)Характеристики материалов в сухом состоянии приведены при массовом отношении влагив материале ω, %, равном 0.

Растворные швы кладки влияют на теплотехническую однородность стен из газобетонных блоков, а следовательно и на расчетные значения сопротивлений теплопередаче. Чем толще швы кладки и чем выше их коэффициент теплопроводности, тем более значительно это влияние. Рассмотрим влияние растворных швов кладки на параметры теплотехнической однородности стен из газобетонных блоков.

Для расчета примем регулярный повторяющийся фрагмент кладки стен из газобетонных блоков (рис.3.5). Толщина рассматриваемого фрагмента — 375 мм. Размеры блоков в кладке: длина — 625 мм, ширина — 375 мм, высота — 250 мм. Марка блоков по плотности – D500, коэффициент теплопроводности для условий эксплуатации Б, — λБ=0.132 Вт/ м °С (согласно данным табл. А.1 ГОСТ 31359). Для упрощения расчетов в представленном ниже примере и для клея и для раствора примем цементно-песчаный плотностью 1800 кг/м3 (коэффициент теплопроводности, — λБ=0.93 Вт/м°С).

Рассмотрим следующие варианты кладки стен:

на клею со средней толщиной горизонтальных и вертикальных швов кладки 2 мм (рис. 3.5а);

на растворе со средней толщиной горизонтальных и вертикальных швов кладки 10 мм (рис. 3.5 б).

Расчет термического сопротивления регулярного фрагмента стеновой конструкции произведем методом сложения проводимостей.

Кладка на клею (рис. 3.5а)

Выделим регулярный фрагмент кладки А и разделим его на участки с различной проводимостью плоскостями, параллельными тепловому потоку. Получаем два однородных и одинаковых по толщине участка со следующими параметрами:

Термическое сопротивление всего регулярного фрагмента определяем по формуле (10) СП 23-101: Rг=ΣАi/Σ(Аi/ Ri)=(0,625+0,007)/(0,625/2,84+0,007/0,4)=2,66(м2*оС/Вт),

Соответственно, коэффициент теплотехнической однородности определяем по формуле: r=R r /Rг.б.=2,66/2,98=0,89

Кладка на растворе (рис. 3.5б)

Произведем аналогичный расчет для регулярного фрагмента Б:

Термическое сопротивление всего регулярного фрагмента: R г =ΣАi/Σ(Аi/ Ri)=(0,625+0,036)/(0,625/2,84+0,036/0,4)=2,13(м2* о С/Вт),

Соответственно коэффициент теплотехнической однородности определяем по формуле: r=R r /Rг.б.=2,13/2,98=0,71

В таблице приведены расчетные значения коэффициентов теплотехнической однородности r для некоторых типов кладки стен из полнотелых стеновых неармированных изделий из ячеистого бетона автоклавного твердения с размером изделия в кладке 625*250 мм:

Источник

Оцените статью