Сопротивление теплопроводности слоя стены находится по формуле

Содержание
  1. Теплотехнический расчёт стены
  2. Теплотехнический расчёт однородной наружной стены здания
  3. Исходные данные
  4. Определение требуемого сопротивления теплопередаче
  5. Определение приведённого сопротивления теплопередаче стены
  6. Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции
  7. Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи
  8. Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
  9. Теплотехнический расчёт наружной стены здания с учётом неоднородности
  10. Исходные данные
  11. Определение удельных потерь теплоты кладочной сетки
  12. Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи
  13. Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
  14. Сравнение результатов расчёта
  15. Как расчитать величины термических сопротивлений ограждающих конструкций.

Теплотехнический расчёт стены

Теплотехнический расчёт однородной наружной стены здания

Исходные данные

Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:

№ слоя Слой δ, мм λ, Вт/(м °С) γ, кг/м 3
1 Кладка из кирпича керамического пустотного 120 0.64 1300
2 Минераловатный утеплитель 150 0.039 60
3 Кладка из кирпича керамического полнотелого 380 0.81 1600
4 Штукатурка ц.п. 20 0.91 1800

Определение требуемого сопротивления теплопередаче

Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:

Читайте также:  Как обклеить стены ламинатом

где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].

Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]

где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]

Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,

Определение приведённого сопротивления теплопередаче стены

где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;

Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:

δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.

Расчетное значение сопротивления теплопередаче, R0:

R0 > Rreq — Условие выполняется

Толщина конструкции, ∑t =675 мм;

Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Значение выразим из формулы (5.4) СП 50.13330.2012

Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.

Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи

Схема ограждающей конструкции:

Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м

Шаг 1 геометрия

Шаг 2 Создание элементов конвекции

Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.

Шаг 3 характеристики материалов

В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.

Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);

Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.

Шаг 4 Внешняя нагрузка

Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.

Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Теплотехнический расчёт наружной стены здания с учётом неоднородности

Исходные данные

Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.

Определение приведённого сопротивления теплопередаче с учётом неоднородностей

Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр 0, (м 2 *°C)/Вт, следует определять по формуле:

где R усл 0 — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;

где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);

Определение удельных потерь теплоты кладочной сетки

Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.

Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м

Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015

Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м

dут, мм λ0 = 0,2 λ0 = 0,6 λ0 = 1,8
50 0,005 0,008 0,011
80 0,005 0,007 0,009
100 0,004 0,007 0,008
150 0,004 0,005 0,006

Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м

dут, мм λ0 = 0,2 λ0 = 0,6 λ0 = 1,8
50 0,018 0,031 0,043
80 0,018 0,028 0,035
100 0,017 0,026 0,031
150 0,015 0,021 0,024

Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ0, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ0 = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.

Потери теплоты по таблице Г.42:

Потери теплоты по таблице Г.43:

Итоговое значение потерь теплоты:

Суммарная протяжённость линейных неоднородностей Σlj = 2 м.

Подставив полученные значения в формулу (Е.1), получим:

Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи

Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.

Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Сравнение результатов расчёта

Сравнение будем выполнять в табличной форме:

Источник

Как расчитать величины термических сопротивлений ограждающих конструкций.

Советы начинающему инженеру.

Продолжение статьи про коэффициенты теплопередачи ограждающих конструкций.

В предыдущей статье рассматривалось, где найти R ограждающих конструкций, если здание реконструируется или проектируется с учетом существующих норм.

Другое дело, когда заказчик просит посчитать теплопотери, например, в уже построенном здании.

Для этого необходимо знать толщины каждого слова, и наименование материала.

Наименование материала нужно для того чтобы найти теплопроводность

согласно приложения Т СП 50.13330.2012.

Теплотехнический расчет наружной стены

Сопротивление теплопередаче Ro, м2×°С/Вт, ограждающей конструкции следует определять по формуле,

Ro=1/ альфа внутр +Rк +1/ альфа наруж, по формуле Е.6 СП 50.13330.2012;

где альфа внутр. — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, принимаемый по табл. 4 СП 50.13330.2012;

Rк — термическое сопротивление ограждающей конструкции, м2×°С/Вт,

определяемое: однородной (однослойной) — по формуле 9.5 СП 50.13330.2012,

Rк = R1 + R2 + . + Rn, многослойной по формуле 7.4 СП 50.13330.2012

альфа наруж — коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции. Вт/(м °С), принимаемый по табл. 6 СП 50.13330.2012.

альфа внутр. = 8,7

Рассчитать фактическое сопротивление теплопередачи наружной стены в жилых помещениях.

Кирпич толщ. 0.65 м, теплопроводность 0.58 Вт/м2х°С

Пенополистирол толщ. 0.06 м, теплопроводность 0.05 Вт/м2х°С

Штукатурка толщ. 0.02 м, теплопроводность 0.81 Вт/м2х°С.

Rф = 1/8.7 + 0.65/0.58 + 0.06/0.05 + 0.02/0.81 + 1/23 = 2.52 м2 х °С /Вт

Коэффициент теплопередачи стены К=1/ Rф =1/2,52=0,3968 Вт/(м2 х °С)

Рассчитать фактическое сопротивление теплопередачи наружной стены в помещениях ванных комнат.

К онструкция стен:

Кирпич толщ. 0.74 м, теплопроводность 0.58 Вт/м2х°С

Пенополистирол толщ. 0.06 м, теплопроводность 0.05 Вт/м2х°С

Плиты минераловатные толщ. 0.05 м, теплопроводность 0.076 Вт/м2х°С

Штукатурка толщ. 0.02 м, теплопроводность 0.81 Вт/м2х°С

Rф. = 1/8.7 + 0.74/0.58 + 0.06/0.05 + 0.05/0.076 + 0.02/0.81 + 1/23 = 3.317 м2 х°С /Вт

Коэффициент теплопередачи стены К=1/ Rф. =1/3,317=0,3014 Вт/(м2 х С)

Рассчитать фактическое сопротивление теплопередачи наружной чердачного перекрытия.

Стяжка толщ. 0.015 м, теплопроводность 0.76 Вт/м2х°С

Мин.плита «РУФ БАТТС» γ=175кг/м³ толщ. 0.15 м, теплопроводность 0.046 Вт/м2х°С

Rф. = 1/8.7+0,015/0,76+0.15/0,046+1/12=3,48 м2 х °С /Вт

Коэффициент теплопередачи перекрытия К=1/ Rф. =1/3,48=0,287 Вт/(м2 х °С).

Что касаемо окон, то коэффициент теплопередач нужно запрашивать у производителей.

Рубрика основывается на вопросах, которые мне приходят, от подписчиков в интернет ресурсах.

Источник

Оцените статью