Среднее давление под подошвой фундамента определяют по формуле
РII = NII‘/ A ,
Полученное среднее давление сопоставляют с расчетным сопротивлением. Если условие PII≤R не удовлетворено или PII меньше R и разница составляет более 10%, изменяют размеры фундамента. При изменении размера b пересчитывают значение расчетного сопротивления. Добившись соблюдения условия PII≤R, проверяют выполнение условий Pmax≤1,2R и Pmin³0.
Pmax= NII‘/A ± MII‘/W, (определяют по двум комбинациям нагрузок) min |
где MII‘ – расчетное значение момента, действующего на подошву фундамента;
W — момент сопротивления ее площади (для прямоугольной подошвы W=b×l 2 /6).
Если условие Pmax≤1,2R не выполняется, следует увеличить размер фундамента l кратно модулю 300 мм. Краевое давление находят при действии моментов разных направлений и строят две эпюры давления на грунт оснований.
2.7. ПРОВЕРКА ДАВЛЕНИЯ НА КРОВЛЮ СЛАБОГО СЛОЯ
Иногда на глубине z под несущим слоем залегает менее прочный грунт, в котором могут развиваться пластические деформации. Поэтому рекомендуется проверять напряжения, передаваемые на кровлю слабого грунта, по формуле
σzp+σzg≤Rz , | (5) |
где σzp — дополнительное вертикальное напряжение от загрузки фундамента;
σzg — напряжение от собственного веса грунта, считая от природного рельефа;
Rz — расчетное сопротивление грунта на глубине кровли слабого грунта z.
Величину Rz рекомендуется устанавливать по формуле (4). Коэффициенты условий работы γС1 и γС2 и надежности k (а также Mγ, Mg и Mc) находят применительно к слою слабого грунта. Значения b и dz определяют для условного фундамента ABCD, размеры которого назначают, сообразуясь с рассеиванием напряжений в пределах слоя толщиной z.
Если принять, что напряжение σzp действует на подошву условного фундамента ABCD, то площадь его подошвы должна составлять
Az = NII‘/ σzp , |
где NII‘ — нагрузка, передаваемая конструкциями на подошву фундамента.
Зная Az, найдем ширину условного прямоугольного фундамента по формуле
bz= ÖАz + a² — a ,
где a = (l-b) / 2 (l и b — размеры подошвы проектируемого фундамента).
При ленточных фундаментах bz=Az:l. Найдя bz, вычисляют значение расчетного сопротивления грунта подстилающего слоя. Зная Rz, проверяют условие (5). При его удовлетворении зоны сдвигов не имеют существенного значения для величины осадки, поэтому применима линейная зависимость между напряжениями и деформациями; в противном случае необходимо принять большие размеры подошвы, при которых условие (5) будет соблюдаться.
2.8. ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ОСАДКИ ОСНОВАНИЯ МЕТОДОМ ПОСЛОЙНОГО СУММИРОВАНИЯ
Расчет осадки методом послойного суммирования выполняют, используя специальный бланк (табл. 13) в такой последовательности:
контур фундамента наносят на бланк, слева дают инженерно-геологическую колонку с указанием отметок кровли слоев от отм. 0,000, совмещаемой с планировочной;
основание разделяют на горизонтальные слои толщиной не более 0,4b до глубины 4b; при слоистых напластованиях границы слоев необходимо совмещать с кровлей пластов и горизонтом подземных вод;
заполняют графы таблицы (h, z и т.д.);
при определении напряжения σzg=Sγihi ниже горизонта подземных вод значение γ принимают для дренирующих грунтов равным γsb; при прослойке из водонепроницаемых грунтов (суглинок, глина, ил) на их кровле давление увеличивают на величину, равную γwdwz, где γw – удельный вес воды, 10кН/м 3 , dwz – расстояние от горизонта подземных вод до водонепроницаемого слоя;
находят дополнительное давление на подошву фундамента по формуле
по данным 2z/b и соотношению сторон подошвы η=l/b устанавливают по табл.14 значение коэффициента рассеивания напряжений α; для промежуточных значений 2z/b и η значения α определяются интерполяцией;
по данным σzg и σzp строят эпюры напряжений в грунте от собственного веса (слева от оси z) и напряжений от дополнительного давления σzp=αPo(справа от оси z);
определяют нижнюю границу сжимаемого слоя по соотношению 0,2σzg=σzp; если эта граница находится в слое грунта с E≤5МПа или такой слой залегает ниже нее, то нижнюю границу сжимаемой толщи определяют из условия 0,1σzg=σzp;
для каждого из слоев в пределах сжимаемой толщи определяют среднее дополнительное вертикальное напряжение в слое по формуле (σzpi+σ zpi+1)/2; по-
лученные значения вносят в соответствующий столбец табл. 13;
вычисляют среднюю осадку основания по формуле Si = szpihib/Ei, где b = 0,8;
суммируют показатели осадки слоев в пределах сжимаемой толщи и получают осадку основания S.
Расчет основания считается законченным, если найденное значение осадки не превосходит предельного значения осадки Su, определенного для данного типа зданий согласно /3/. Например, для одноэтажного каркасного промышленного здания Su=15 см.
Если полученное значение не превосходит 0,4Su (при благоприятных грунтовых условиях этот показатель обычно находится в пределах 2-5 см), то расчетное сопротивление грунта основания R, вычисленное по формуле (4), может быть увеличено в 1,2 раза при уменьшении размеров фундамента. При этом повышенное давление не должно вызвать деформации основания более 0,5Su.
2.9. КОНСТРУИРОВАНИЕ СТОЛБЧАТОГО ФУНДАМЕНТА
Столбчатый фундамент состоит из плиты и подколонника, который имеет углубление (стакан) для заделки сборной железобетонной колонны или выполняется без него (при сопряжении фундамента с металлической или железобетонной фахверковой колонной).
Конструирование фундамента под железобетонную колонну начинают с определения размеров подколонника и стакана. Рекомендуется принимать типовые размеры верха фундамента (в зависимости от сечения колонны). Для колонн с размером поперечного сечения 400х300 мм, 400х400 мм сечение подколонника принимать 900х900 мм; для колонн с поперечным сечением 500х400 мм, 500х500 мм, 600х400 мм, 600х500 мм сечение подколонника принимать 1200х1200 мм, а для колонн с поперечным сечением 700х400мм, 800х400 мм, 800х500 мм – 1500х1200 мм. Глубина стакана при этом составляет 900 мм.
Размеры фундамента должны быть модульными, в плане и по высоте кратны 300 мм, при этом высота ступеней равна 300 и 600 мм ( рис. 1).
Конструирование фундамента ступенчатой формы выполняют вначале в плоскости большего размера l. Для этого на отметке (– 0,150) откладывают соответствующий размер подколонника симметрично оси фундамента. Количество ступеней — от одной до трех. При этом вылет ступеней по размеру должен быть не меньше высоты ступени (300, 450, 600 и 900 мм). Аналогично конструируют фундамент в направлении короткой стороны b. В результате число ступеней по обеим его сторонам не должно отличаться более чем на одну. Желательно же одинаковое их количество.
На строительной площадке предпочтительно применять столбчатые фундаменты из монолитного тяжелого бетона классов В10, В12,5, В15, В20 (с минимальной маркой по морозостойкости F50).
Плитная часть фундамента проверяется расчетом на продавливание /10/. При этом продавливающая сила должна быть воспринята бетонным сечением, как правило, без постановки поперечной арматуры.
Следует различать две схемы расчета на продавливание:
при сопряжении сборной колонны с высоким фундаментом с высотой подколонника, удовлетворяющей условию hcf — dp ≥ 0,5(lcf — lc), где hcf – высота подколонника; dp – глубина стакана; lcf – длина поперечного сечения подколонника; lc – длина поперечного сечения колонны (в этом случае продавливание плитной части рассматривается от низа подколонника на действие продольной силы N и изгибающего момента M);
при сопряжении сборной колонны с низким фундаментом (в этом случае расчет ведется на продавливание колонной от дна стакана при действии только продольной силы N).
Фундамент армируется следующим образом: плита — сеткой С1 из стержней класса AIII и диаметром не менее 10 мм вдоль стороны с размером до 3 м и 12 мм при размере больше 3 м с шагом 200 мм (рис.1); подколонники — двумя сетками С2 из стержней класса AI и AIII. Продольная рабочая арматура класса АIII диаметром не менее 10 мм ставятся с шагом 200 мм, а поперечная арматура класса АI диаметром не менее 6 мм с шагом 600 мм. Подбор диаметра арматуры осуществляется в результате расчета фундамента по прочности при руководстве пособием. /10/
Кроме этого, армируется стакан столбчатого фундамента. Поперечную арматуру назначают конструктивно в виде сеток С-3 из парных стержней Æ8 AIII с шестью сетками при наибольшем значении эксцентриситета (е > lc/2) и с пятью сетками в остальных случаях. Шаг сеток в первом варианте 50+2х100+2х200, во втором варианте 50+2х100+200. Верхняя сетка заглублена от обреза на 50 мм, нижняя ставится выше торца колонны не менее чем на 50мм.
Под фундаментом, как правило, устраивается подготовка из бетона В 3,5 толщиной 100 мм (с выпуском за грань плиты фундамента не менее чем на 150 мм). При этом толщина защитного слоя бетона принимается равной 35 мм. Подготовку можно не устраивать на крупнообломочных грунтах, в этом случае защитный слой бетона имеет толщину 75 мм.
Для опирания наружных стен и сооружения цоколя необходимо предусмотреть фундаментные балки (табл.15). Размеры их зависят от шага колонн, ширины наружных стен и размеров подколонника. Для зданий с навесными панелями и шагом колонн 6 м рекомендуется применять балки 2БФ и 3БФ, а при шаге колонн 12 м – балки 5БФ и 6БФ. Фундаментные балки, как правило, опираются на бетонные столбики, ширина которых должна быть не менее максимальной ширины балки, а обрез на отметке — 0,35м или — 0,65 м (в зависимости от ее высоты).
Источник
Распределение давления в грунтах основания
Грунты основания испытывают два вида давления:
- бытовое sб, возникающее в грунтах под влиянием веса вышележащих слоев;
- дополнительное s, возникающее под влиянием нагрузок от фундаментов.
Бытовое давление увеличивается с увеличением глубины залегания и определяется по формуле:
где z – глубина точки в которой определяется бытовое давление.
Дополнительное же давление, как показали исследования, уменьшается по мере удаления от подошвы фундаментов вглубь грунтов. Схема распределения давления в толще грунтов (по оси фундамента) показана на рис. 1.
Рисунок 1. Схема распределения давления в толще грунтов (по оси фундамента)
Ординаты эпюр давления на любой глубине hi от подошвы отложены от вертикальной оси фундамента. Слева от оси показана эпюра давления sб, справа от оси — эпюра давления s. Глубину h, где давление sh составляет 20 % от бытового sб, принято считать нижней границей сжимаемой толщи грунтов основания (глубиной активного слоя основания).
Давление от фундаментов s непосредственно под подошвой передается неравномерно (рис. 2). Однако при большой жесткости фундамента когда его собственные деформации несоизмеримо малы по сравнению с осадкой основания можно не учитывать криволинейного характера эпюры реактивных давлений, так как это оказывает малое влияние на размеры фундамента, но очень усложняет расчет. Поэтому в строительной практике принято для упрощения пренебрегать упругостью основания и считать, что давления от фундаментов на грунты основания распределяются по линейному закону. При этом условно принимают, что эпюра давления непосредственно под подошвой фундамента в зависимости от величины эксцентриситета е имеет при центральном сжатии форму прямоугольника (рис. 2, а и б), при внецентренном — форму трапеции (рис. 2, в) или треугольника (рис. 3, г и д).
Рисунок 2. Эпюры давления грунтов под подошвой: а–при глинистых грунтах; б–при песчаных грунтах; в–при внецентренной нагрузке, когда е b/6.
В общем случае ординаты эпюры давления под подошвой жесткого фундамента, при действии вертикальной нагрузки, определяются по формуле:
где P – результирующая вертикальной нагрузки на фундамент; F – площадь подошвы фундамента; Ix, Iy – соответственно, моменты инерции подошвы фундамента относительно осей x и y (см. рис 3).
Рисунок 3. Схема к расчету давлений под подошвой жестких фундаментов
Если на фундамент действует, кроме вертикальной, горизонтальная нагрузка или опрокидывающий момент, то в этом случае находят опрокидывающий момент, создаваемый горизонтальной нагрузкой, а формула запишется в виде:
где Mx, My – опрокидывающие моменты относительно осей, соответственно, x и y.
Гибкие же фундаменты, величина собственных деформаций которых одного порядка с величиной осадки, следует рассчитывать с учетом упругих свойств грунтов основания. Если не учитывать упругих свойств грунта при сосредоточенной нагрузке, то это может привести к значительным ошибкам и не всегда в запас прочности.
Кроме давления непосредственно под подошвой, проектировщику необходимо также знать закон распределения давления от фундаментов в толще грунтов на глубине двух- или трехкратной ширины подошвы (в пределах сжимаемой толщи). Эти действующие в грунтах давления нужны при определении осадки здания и при проверке прочности подстилающего слоя грунта, если последний слабее слоя, залегающего непосредственно под подошвой фундамента. Как было указано выше, давление s распределяется в глубину и по ширине основания, причем неравномерно как по горизонтальным, так и по вертикальным сечениям. На рис. 4 показаны эпюры давления s в сжимаемой толще грунтов по горизонтальным сечениям на разных глубинах (h1=0,50b; h2=1,0b; h3 =1,5b и так далее), выраженных в единицах ширины подошвы фундаментов b. Ординаты эпюр зависят от давления s под подошвой. Они даны справа и для ленточного фундамента соответственно равны.
Рисунок 4. Эпюры распределения давления в грунте и изобары
Таким образом, зная среднее давление s под подошвой и отношение глубины заложения рассматриваемой горизонтальной площадки к ширине подошвы hi/b, можно легко определить давление в грунтах на любой глубине h, по формуле:
где a – коэффициент, принимаемый по таблице 1.
На том же рис. 5 показаны изобары — точки в грунте основания, испытывающие одинаковое по величине давление.
Исследования показали, что вид грунта оказывает малое влияние на характер распределения давления в толще грунтов. Размеры и форма фундаментов в плане существенно влияют на распределение давления в грунтах. Так, давление на глубине h=b ниже подошвы при квадратном в плане фундаменте равно 34 %, а при ленточном — 55 % от давления s под подошвой (табл. 4).
Таблица 1. Величины коэффициента a
Источник