Конструктивные решения промышленных зданий
Конструктивное решение здания определяется на начальном этапе проектирования и сводится к выбору конструктивной и строительной систем и конструктивной схемы.
Конструктивная система представляет собой совокупность взаимосвязанных вертикальных и горизонтальных несущих конструкций здания, обеспечивающих его прочность, жесткость и устойчивость.
Строительную систему здания определяет материал конструкций и способ его возведения.
Большинству промышленных зданий присуща каркасная конструктивная система.
Это объясняется наличием во многих промышленных зданиях больших сосредоточенных нагрузок, ударов и сотрясений от технологического и кранового оборудования, больших площадей остекления.
Каркас одноэтажного промышленного здания представляет собой пространственную систему, состоящую из поперечных рам, объединенных в пределах каждого температурного блока плитами покрытия, связями, иногда подстропильными конструкциями и др.
Поперечные рамы состоят из колонн и стропильных конструкций (ригелей).
Способ соединения ригеля с колоннами может быть жестким и шарнирным, а колонн с фундаментами, как правило, жестким.
Шарнирное соединение ригелей с колоннами способствует их независимой типизации и унификации.
Каркасная конструктивная схема обеспечивает свободную планировку помещений, максимальную унификацию сборных элементов и наиболее экономичное решение как одноэтажных, так и многоэтажных зданий.
При назначении ограждающих конструкций руководствуются в первую очередь обеспечением необходимых теплозащитных требований.
В заданном климатическом районе строительства они должны обеспечивать минимальные теплопотери в холодный период года и предотвращать перегрев – в летний, к тому же они должны способствовать повышению художественно – эстетического облика здания.
Несущие и ограждающие конструкции производственных зданий надлежит проектировать с применением унифицированных сборных элементов индустриального изготовления.
Конструктивная схема здания должна обеспечивать максимальную «гибкость» внутрицехового пространства, т.е. незаполненность его вертикальными несущими конструкциями.
Промышленные здания содержат разнообразное взаимное расположение пролетов в блокированном и под одну крышу здании :
— параллельные пролеты одной высоты;
— параллельные пролеты разных высот;
— взаимно перпендикулярные пролеты.
При этом возникает необходимость разрезки блокированного здания на температурные отсеки продольными и поперечными продольными швами.
Поперечные температурные швы в железобетонном и смешанном каркасе отапливаемого здания устраивают через 72м по длине пролета, а в цельнометаллическом – через 230м.
Продольные температурные швы в отапливаемом здании со сборным железобетонным и смешанным каркасом устанавливаются через 144м, при стальном каркасе – через 150м по ширине пролета здания или совмещаются с перепадом высот пролетов одного направления (параллельных пролетов).
Для обеспечения жесткости каркаса здания в продольном направлении в каждом температурном отсеке пролета, оборудованного мостовыми опорными кранами, необходимо установить вертикальные стальные связи.
Эти связи устраивают по продольным осям колонн в одном из центральных шагов отсека.
Устанавливать вертикальные связи по подкрановой части колонн в шагах, примыкающих к торцу здания и к поперечному температурному шву запрещается.
Источник
Стены по конструктивному решению промышленные здания
Унификация — приведение к единообразию размеров объемно-планировочных параметров зданий и их конструктивных элементов, изготовляемых на заводах. Унификация имеет целью ограничение числа объемно-планировочных параметров и количества типоразмеров изделий (по форме и конструкции). Осуществляют ее путем отбора наиболее совершенных решений по архитектурным, техническим и экономическим требованиям.
Типизация — техническое направление в проектировании и строительстве, позволяющее многократно осуществлять строительство разнообразных объектов благодаря применению унифицированных объемно-планировочных и конструктивных решений, доведенных до стадии утверждения типовых проектов и конструкций.
Типовые конструкции и детали, хорошо зарекомендовавшие себя в эксплуатации и включенные в каталоги типовых изделий, обязательны для применения.
Помимо изыскания оптимальных объемно-планировочных параметров (пролет, шаг и высота) и конструктивных (сортамент строительных изделий), унификация и типизация должны устанавливать градации функциональных параметров: долговечности отдельных конструкций и зданий в целом, температурно-влажвостных и технологических режимов и т. п.
Типовые объемно-планировочные и конструктивные решения должны позволять внедрять прогрессивные нормы и методы производства и предусматривать возможность развития и совершенствования технологии производства. Здесь надо иметь в виду, что периоды перестановки и замены технологического оборудования весьма различны: для одних производств они равны 3—4 годам, для других — 10 годам и более.
При разработке вопросов типизации и унификации учитывают также перспективы развития несущих конструкций (особенно большепролетных зданий), требования модульной системы, возможность обеспечения выразительного архитектурно-художественного облика зданий и технико- экономические показатели.
Таким образом, унифицированные объемно-планировочные и конструктивные решения не являются чем-то застывшим; они постоянно совершенствуются в связи с прогрессом в технологии строительного производства, изменением норм проектирования и градостроительных требований.
Обеспечить взаимозаменяемость элементов можно при комплексном подходе к их конструированию. Необходимым условием взаимозаменяемости является выработка единой системы допусков изготовления и сборки конструкций вне зависимости от их материалов.
Примерами взаимозаменяемых конструкций могут служить замена металлических ригелей железобетонными или деревянными, покрытии с прогонами беспрогонными, стеновых блоков крупноразмерными панелями и т. п. Взаимозаменяемыми должны быть панели наружных стен зданий, одинаковые по размерам, по теплотехническим и иным качествам, но выполненные из различных материалов.
Высшей формой унификации является создание универсальных конструкций и деталей, пригодных для различных объектов и конструктивных схем (например, использование колонн одного типоразмера в зданиях с различными пролетами, применение одних и тех же панелей для стен и покрытий и т. п.).
Подобно универсальным планировочным решениям, делающим здания гибкими в технологическом отношении, универсальные конструкции и детали расширяют область их использования. Итак, основными задачами унификации и типизации являются:
уменьшение числа типов промышленных зданий и сооружении и создание условий для их широкого блокирования;
сокращение числа типоразмеров сборных конструкций и деталей с целью повышения серийности и снижения стоимости их заводского изготовления;
рациональное членение конструкций на монтажные единицы и разработка несложных приемов их сопряжения и крепления;
создание лучших условий для использования прогрессивных технических решений.
Модульная система и параметры зданий
Унифицировать и типизировать объемно-планировочные и конструктивные решения зданий и сооружений можно на основе единой модульной системы, позволяющей взаимоувязывать размеры здании и их элементов.
В модульной системе обязателен принцип кратности всех размеров некоторой общей величине, называемой модулем. Для промышленного строительства установлен единый модуль М = 600 мм для вертикальных и горизонтальных измерений.
Целью применения модульной системы является обеспечение кратности размеров единому модулю и строгое ограничение числа типоразмеров конструкций и деталей зданий и сооружений. Поэтому при проектировании используют укрупненные (производные) модули, кратные единому модулю.
При назначении размеров объемно-планировочных компонентов ЦНИИпромзданий рекомендует принимать следующие укрупненные модули:
в одноэтажных зданиях для ширины пролетов и шага колонн — 10 М, а для высоты (от пола до низа опоры основных конструкций покрытия пролетов) — 1 М;
в многоэтажных зданиях для ширины пролетов — 5 М, шага колонн— 10 М и высоты этажей— 1 М и 2 М.
Ниже приведены размеры пролетов, шагов колонн и высот одноэтажных зданий, назначаемые в соответствии с основными положениями по унификации и с учетом габаритных схем.
Ширина пролетов: при отсутствии мостовых кранов — 12, 18, 24, 30 и 36 м (допускаются пролеты шириной 6 и 9 м); при наличии электрических мостовых кранов — 18, 24, 30 и 36 м. По технологическим соображениям ширина пролетов может быть и более 36 м, кратной 6 м.
Шаг колонн 6, 12 м и более, кратный 6 м. В многопролетных зданиях шаг колонн в крайних и средних рядах может быть различным. Высота (от пола до низа опоры основных конструкций покрытия): 4,8; 5,4 и 6,0 м (т- е- кратно 0,6); 7,2; 8,4; 9,6; 10,8; 12,0; 13 2* 14,4; 15,6; 16,8 и 18,0 м (кратно 1,2 м)
При назначении и взаимной увязке размеров объемно-планировочных и конструктивных элементов обычно фигурируют номинальные размеры — расстояние между разбивочными осями здания, между условными (номинальными) гранями строительных конструкций и деталей. Номинальные размеры всегда кратны модулю.
В отличие от номинальных конструктивные размеры чаще всего не являются модульными, и увязывают их с номинальными за счет толщины швов, зазоров, стыков (иногда доборных элементов или вставок). Так, при шаге колонн 6000 мм длину стеновых панелей принимают 5980 мм, в то время как номинальная длина их считается равной 6000 мм. Объемно- планировочные параметры конструктивных размеров не имеют.
Использование в проектировании укрупненных модулей дает возможность укрупнять конструкции и детали, т. е. уменьшать число монтажных элементов. Укрупнять сборные конструкции целесообразно и для обеспечения большей надежности их работы в здании или сооружении.
Конструктивные схемы зданий
По конструктивной схеме промышленные здания подразделяют на каркасные, бескаркасные и с неполным каркасом.
В бескаркасных одноэтажных зданиях, имеющих несущие стены, размещают небольшие цехи с пролетами до 12 м, высотой не более 6 м и при грузоподъемности кранов до 5 т. В местах опирания стропильных конструкций стены с внутренней или наружной стороны усиливают пилястрами. Бескаркасные многоэтажные здания строят редко.
Основным типом промышленного здания является каркасное. Это объясняется наличием во многих промышленных зданиях больших сосредоточенных нагрузок, ударов и сотрясений от технологического и кранового оборудования, сплошного или ленточного остекления. Каркас одноэтажного промышленного здания представляет собой пространственную систему, состоящую из поперечных рам, объединенных в пределах температурного блока плитами покрытия, связями, иногда подстропильными конструкциями и другими элементами.
Поперечные рамы состоят из колонн и стропильных конструкций (ригелей). Способ соединения ригеля с колоннами может быть жестким и шарнирным, а колонн с фундаментами, как правило— жестким. Шарнирное соединение ригелей с колоннами способствует их независимой типизации.
Применяемый в многоэтажных зданиях сборный железобетонный каркас решается обычно в виде рам с жесткими узлами. Возможно применение рамно-связевой системы, в которой жесткие поперечные рамы воспринимают вертикальные нагрузки, а связи, лестничные клетки и лифтовые шахты— горизонтальные нагрузки, действующие в продольном направлении.
В каркасных зданиях все вертикальные и горизонтальные нагрузки воспринимают элементы каркаса, а стены (самонесущие, навесные и иногда подвесные) выполняют роль ограждения.
Наличие каркаса в качестве несущего остова позволяет наилучшим образом обеспечить принцип концентрации высокопрочных строительных материалов в наиболее ответственных несущих конструкциях зданий.
Каркасная конструктивная схема обеспечивает свободную планировку помещений, максимальную унификацию сборных элементов и наиболее экономичное решение как одноэтажных, так и многоэтажных здании. имеющие два и более пролетов, бескрановые или с кранами небольшой грузоподъемности, иногда проектируют с неполным каркасом. В таких зданиях пристенные колонны отсутствуют, а наружные стены выполняют несущие и ограждающие функции.
Технико-экономическая оценка зданий
Разместить одно и то же производство можно в зданиях с различными объемно-планировочными и конструктивными решениями. Заданные санитарно-гигиенические и бытовые условия также могут быть достигнуты несколькими способами. Задачей проектировщиков является выбор такого варианта из намеченных, при котором производство продукции, максимально удовлетворяя всем условиям, отвечало бы требованиям экономической эффективности использования средств.
По каждому намеченному варианту проектируемого здания составляют технико-экономические показатели, сопоставляя которые выбирают самый эффективный из них. В отдельных случаях показатели сравнивают с эталоном аналогичного производства или с данными действующих предприятий.
Технико-экономическую оценку объемно-планировочных и конструктивных решений промышленных зданий производят по указанным ниже характеристикам, исчисляемым раздельно для производственных и административно-бытовых помещений.
Полезную площадь Sп определяют как сумму площадей всех этажей, измеренных в пределах внутренних поверхностей наружных стен, за вычетом площадей лестничных клеток, шахт, внутренних стен, опор и перегородок. В полезную площадь производственного здания включают площади антресолей, этажерок, обслуживающих площадок и эстакад.
Рабочую площадь Яр производственного здания определяют как сумму площадей помещений, располагаемых на всех этажах, а также на антресолях, обслуживающих площадках, этажерках и прочих помещении, предназначаемых для изготовления продукции. В рабочую площадь бытовых помещений включают площади помещений, предназначаемых для обслуживания рабочих (гардеробные, душевые, уборные, умывальные, курительные и т. д.).
Площадь застройки Sз определяется в пределах внешнего периметра наружных стен на уровне цоколя зданий. Конструктивную площадь Sк определяют как сумму площадей сечения всех конструктивных элементов в плане здания (колонн, стен) Подсчитывают площадь наружных стен и вертикальных ограждений фонарей По.
Объем здания V исчисляется умножением измеренной по внешнему контуру площади поперечного сечения (включая фонари) на длину здания (между внешними гранями торцовых стен). Объем подвальных и полуподвальных этажей исчисляют умножением площади застройки на высоту этих этажей.
Определяют стоимость здания (С), затраты труда на возведение (3), массу здания <В), расход основных строительных материалов (М), объем сборного железобетона (Ж). Указанные характеристики подсчитывают для всех вариантов проектируемого здания. Для анализа и окончательного выбора наиболее экономичного из вариантов определяют показатели Ки К2, « • • »
Коэффициент K1, характеризующий экономичность объем но-планировочного решения, вычисляют как отношение объема здания к полезной площади. Чем ниже значение этого показателя, тем экономичнее объ- емно-планировочное решение здания.
Коэффициент К2, характеризующий целесообразность планировки, определяют отношением рабочей площади к полезной. Чем выше значение К2, тем экономичнее планировка.
Коэффициент Дз, характеризующий насыщение плана здания строительными конструкциями, определяют отношением конструктивной площади к площади застройки. Чем ниже этот показатель, тем экономичнее решение.
Коэффициент Ki характеризует экономичность формы здания и определяется отношением площади наружных стен и вертикальных ограждений фонарей к полезной площади. Чем ниже здание Ка, тем экономичнее форма здания.
Коэффициент Къ выражает стоимость единицы рабочей площади или объема здания.
Коэффициент характеризует расход основных материалов на единицу рабочей площади или объема здания (металла и цемента в кг, бетона и железобетона в м3, леса в м3 в переводе на круглый лес и других материалов).
Коэффициент К? отражает экономичность конструктивного решения здания и определяется отношением массы здания к единице рабочей площади или объема.
Коэффициент Кв характеризует трудоемкость, приходящуюся на единицу площади или объема здания.
Коэффициент К9 отражает сборность здания и определяется отношением стоимости сборных конструкций и их монтажа к общей стоимости здания.
Особенности универсальных зданий
Объемно-планировочное и конструктивное решения промышленного здания, как отмечалось, определяются характером технологического процесса. Изменения технологии, вызываемые совершенствованием способов производства и оборудования, сменой номенклатуры и повышением требований к качеству продукции, а также экономическими факторами, часто влекут за собой переустройства зданий заводских цехов.
В современном производстве в различных отраслях промышленности периоды модернизации технологии колеблются в пределах от 2—3 до 20—25 лет. При этом часто изменяются и габариты технологического оборудования.
Следовательно, промышленные здания, запроектированные только на заданный технологический процесс, в результате непрерывного технического прогресса через несколько лет требуется реконструировать. При этом неизбежны большие материальные затраты, а отдельные цехи выходят на долгое время из эксплуатации.
Переустройства и реконструкция зданий для приспособления их к измененной технологии производства часто необходимы и в тех случаях,: когда здания еще имеют нормальное физическое состояние и могли бы служить десятки лет. Иначе говоря, здание, перестав удовлетворять требованиям новой технологии производства, считается морально устаревшим или изношенным.
Срок морального износа промышленного здания (период соответствия его модернизированному производству) можно определить ориентировочно на основе анализа развития данного производства с учетом темпов развития промышленности в будущем. Срок физического износа здания подсчитывают более точно, так как он регламентируется степенью капитальности здания. Наиболее экономичными здания будут в том случае, когда предельно сближены сроки их морального и физического износа. После этого периода эксплуатации здание должно подлежать сносу или коренной реконструкции.
При современных темпах развития социалистической промышленности наиболее целесообразны здания, легко приспособляемые к изменениям технологии производства или позволяющие размещать в них различные производства без нарушения архитектурно-строительной основы. Такие здания, впервые разработанные советскими инженерами, получили название «гибких» или универсальных. Универсальные промышленные здания практически не претерпевают морального износа и поэтому их проектируют высокой капитальности, обеспечивающей длительный срок- эксплуатации.
Главной особенностью гибких или универсальных зданий является коупненная сетка колонн. Меньшее количество внутренних опор позволяет облегчить процесс модернизации технологии, расставлять оборудование более экономно, организовать технологический поток вдоль или поперек пролетов, улучшить условия труда в цехах. Кроме того, резкое уменьшение количества несущих элементов здания позволяет уменьшить трудоемкость и сократить сроки строительства, а в отдельных случаях и снизить стоимость зданий.
Источник