Строительство фундаментов кессонным методом
В настоящее время кессоны применяются, когда:
- – подземное сооружение возводится в непосредственной близости от существующих зданий или сооружений и есть опасность выноса или выпора грунта из-под подошвы их фундаментов;
- – подземное сооружение строится в сильно обводненных грунтах. В этих условиях опускной колодец требует больших затрат на водоотлив, и поэтому экономически выгоднее использовать кессон. Кроме того, кессон находит применение при проходке горизонтальных туннелей в водонасыщенных грунтах.
По назначению различают кессоны: для устройства глубоких фундаментов и заглубленных зданий; для выполнения различных строительных работ под водой.
По способу опускания кессоны делят на: опускаемые с поверхности земли и из котлованов; островные, погружаемые на местности, покрытой водой, с искусственных островков; наплавные, опускаемые с воды путем затопления кессонной камеры, которой предварительно сообщается плавучесть [27].
VII.2.2. Элементы кессона и оборудование для его опускания
VII.2.2.а. Кессоны для устройства глубоких фундаментов и заглубленных зданий
Собственно кессон (рис. VII-22) состоит из кессонной камеры, надкессонного строения, гидроизоляции Обычно кессонная камера устраивается из железобетона и лишь в редких случаях — из металла. Форма сечения кессонной камеры — прямоугольная, квадратная или круглая. Стенки камеры наклонные и заканчиваются ножом (рис. VII-23). Высота камеры от банкетки до потолка принимается не менее 2,2 м. В потолке оставляются отверстия для установки шахтной трубы, патрубков для трубопроводов сжатого воздуха, воды, электроэнергии.
Надкессонное строение выполняется в зависимости от назначения кессона как колодец с железобетонными стенками (рис. VII-22, а) или в виде сплошного массива из монолитного бетона или железобетона (рис. VII-22, б). Иногда в конструкции надкессонного строения предусматривается установка по наружному контуру кессона тонких железобетонных плит-оболочек, выполняющих роль внешней опалубки. С внутренней стороны плиты-оболочки снабжается выпусками арматуры или покрываются мелким щебнем (щебеночная шуба). То и другое служит связью для бетона, укладываемого в надкессонное строение.
Гидроизоляция наносится на наружные стенки кессона для защиты от проникания воды внутрь кессона. В качестве гидроизоляции применяются торкрет, покраска битумно-бензиновым раствором, штукатурка из холодных битумных мастик и из горячих асфальтовых растворов, металлические листы, свариваемые в виде ванны. Перед нанесением гидроизоляции поверхность бетона должна быть хорошо очищена от грязи, краски, масляных пятен и т.п. Удаляют также слой слабого бетона, выступы и наплывы на поверхности бетона, расчищают каверны.
VII.2.2.б. Наплавные кессоны
При возведении фундамента, опоры или заглубленного здания вдали от берегов водоема при значительных глубинах воды, в связи с чем устройство искусственных островков становится сложным и экономически невыгодным, используют наплавные кессоны.
Наплавной кессон (рис. VII-24) состоит из кессонной камеры, замкнутой камеры равновесия, открытой сверху центральной шахты, регулировочных шахт, рабочего балласта на потолке камеры.
Камера равновесия, центральная и четыре регулировочные шахты наполняются водой, которая служит балластом кессона при его погружении. Для всплытия кессона водный балласт удаляется из камеры равновесия сжатым воздухом и из шахт — насосами [44].
VII.2.2.в. Оборудование для опускания кессонов
В СССР наибольшее распространение получил шлюзовой аппарат конструкции Н.И. Филиппова. Он предназначен для шлюзования людей и грузов, поступающих в кессонную камеру, и выполнения грузоподъемных операций при спуске в камеру или подъеме различных грузов из нее. Шлюзовой аппарат соединен с кессонной камерой шахтными трубами.
Схема шлюзового аппарата представлена на рис. VII-25. Он состоит из центральной камеры, пассажирского прикамерка, грузового прикамерка. Сверху центральной камеры расположен подъемный механизм, состоящий из барабана, редуктора и электродвигателя.
К барабану на стальном канате подвешена бадья. Пассажирский и грузовой прикамерки имеют подвесные на роликах двери, открывающиеся только внутрь. Для герметичности при шлюзовании двери снабжены резиновыми прокладками. Сжатый воздух от компрессорной станции подается в центральную камеру и прикамерки по трубопроводу.
В центральной камере и грузовом прикамерке уложен рельсовый путь под вагонетку. Грунт, поднятый из кессонной камеры в бадье, выгружается в вагонетку с откидным дном и выдается через грузовой прикамерок наружу, где вагонетка разгружается в специально устроенный желоб. Внизу центральная камера заканчивается овальным фланцем, к которому приболчивается шахтная труба. Шахтные трубы состоят из звеньев длиной по 2 м, соединяемых между собой болтами. Внутри шахтной трубы имеется перегородка, разделяющая трубу на два отделения — людской лаз и грузовое отделение. Людской лаз оборудован лестницей, а грузовое отделение — направляющими устройствами для спуска-подъема бадьи.
Трубопроводы для подачи сжатого воздуха монтируются из двух ниток, идущих параллельно от компрессорной станции. Диаметр трубопроводов устанавливается расчетом в зависимости от его длины и расхода сжатого воздуха. От каждой нитки магистрального воздухопровода делают три отвода — два для подачи сжатого воздуха в кессонную камеру и один в центральную камеру и прикамерки шлюзового аппарата. Рабочей является одна из ниток воздухопровода, вторая — резервная.
Компрессорная станция монтируется, как правило, из стационарных компрессоров производительностью 10—20 м 3 /мин с электроприводом. Количество компрессоров определяется по максимально возможному расходу воздуха. Кроме того, на случай аварии должны быть запасные компрессоры. Согласно правилам техники безопасности, резервная мощность компрессорной станции должна быть: при одном рабочем компрессоре не меньше 100%, при двух — не менее 50%, при трех и более — не меньше 33% рабочей мощности. Технические данные воздушных компрессоров стационарного типа, применяемых на кессонных работах, приведены в табл. VII-3.
Технические данные воздушных компрессоров стационарного типа
Показатель | Марка компрессора | |||||
В-300-2К | 2Р-20/8 | 160В-10/8 | 200В-10/8 | 2СА-8 | КВ-200 | |
Производительность, м 3 /мин | 40 | 20 | 20 | 10 | 10 | 4,5 |
Давление воздуха после II ступени, МПа | 0,8 | 0,8 | 0,8 | 0,8 | 0,8 | 0,6 |
Частота вращения, об/мин | 330 | 500 | 720—735 | 720 | 480 | 650 |
Мощность двигателя, кВт | 250 | 120 | 140 | 75 | 75 | 50 |
Габариты, мм: длина ширина высота | 3300 1820 2200 | 1800 1500 2000 | 1715 1910 1675 | 1350 962 1430 | 1550 1670 1870 | 1100 665 1130 |
Вес, кН | 80 | 45 | 28 | 14,5 | 32 | 7,5 |
Охлаждение | Водяное |
На строительстве, если максимальное давление сжатого воздуха в кессоне превышает 0,15 МПа, обязательно устанавливается лечебный шлюз для заболевших кессонной болезнью.
Оборудование для гидромеханической разработки грунта в камере кессона состоит из гидромониторов (рис. VII-13) и гидроэлеваторов (рис. VII-14). В комплекс одной установки для гидромеханической разработки грунта входят два гидромонитора и один гидроэлеватор. Принято считать, что одним гидромонитором можно обслужить в песчаных и супесчаных грунтах 150—250 м 2 , а в глинистых грунтах — 100—150 м 2 площади кессона.
Величины удельных расходов мониторной воды и оптимальных скоростных напоров приведены в табл. VII-4 и VII-5.
Удельный расход мониторной воды
Грунты | Удельный расход мониторном воды на 1 м 3 грунта, м 3 |
Пески: пылеватые мелкие средней крупности крупные гравелистые | 4—7 5—8 6—10 8—12 10—14 |
Супеси: текучие пластичные твердые | 7—9 8—10 9—12 |
Суглинки: текучие пластичные твердые | 9—10 10—12 11—15 |
Глины: текучие пластичные твердые | 10—11 12—16 14—20 |
Оптимальные скоростные напоры
Грунты | Оптимальные скоростные напоры, м |
Пески: рыхлые средней плотности плотные | 7—10 10—15 15—20 |
Супеси: текучие пластичные твердые | 30—40 40—50 50—80 |
Суглинки: текучие пластичные твердые | 40—50 50—70 70—100 |
Глины: текучие пластичные твердые | 50—70 70—100 100—150 |
Смородинов М.И. Справочник по общестроительным работам. Основания и фундаменты
Источник
Строительство фундаментов кессонным методом
Кессонный способ работы связан с использованием сжатого воздуха. Обычно основоположником кессонных ф) ндаментов
считают французского инженера Триже, хотя первый его кессон еще не был похож на современный. В 1841 г. Триже опускал стальные трубы диамет-: ром 1,03 м через водоносный слой для разработки каменноугольных копей в долине Луары. Труба на глубину 15 м опускалась по принципу опускного колодца с водоотливом. Дальнейшее погружение трубы этим способом не удавалось, и Триже применил сжатый воздух, превратив опускной колодец в кессон. Конструкция кессона Триже показана на рис. 6. Вода из шахты вытеснялась сжатым воздухом.
В оболочку был встроен «воздушный шлюз» с герметическими дверцами. Ниже шлюза находилась рабочая камера или шахта. Принцип работы заключался в следующем. Регулировочным краном воздухопровода давление воздуха внутри шлюза уравнивали с наружным. Когда давление воздуха было равно атмосферному, открывали дверь и входили в шлюз. А затем, закрыв верхнюю дверь и кран, соединяющий внутреннее пространство шлюза с атмосферой, открывали кран, при помощи которого шлюз сообщался
Ы с шахтой. Когда давление воздуха сравнивалось с давлением в шахте, открывали нижнюю дверь, и из шлюза переходили в шахту. Выход из шахты через шлюз наружу происходил в обратном порядке. Рабочие опускались в шахту и подрывали грунт под трубой. Вырытый грунт накладывали в бадьи, которые поднимали в шлюз, а из шлюза грунт перемещали наружу. Применяя этот способ, Триже опустил трубу еще на 6 м.
Такой же способ повторил английский инженер Брюнель при постройке двух мостов, где опускались цилиндры диаметром 11 м и высотой 30 м. Аналогичный способ был применен в 1857 г. при строительстве моста через р. Тиса в Венгрии для опускания стальной трубы диаметром 3 м. При строительстве этого моста были внесены некоторые усовершенствования в конструкцию кессона.
В 1856—1858 гг. в России также был применен этот способ при строительстве моста через р. Неман в Ковно, р. Вислу з Варшаве, р. Двину и др.
Конструктивное оформление современного кессона было дано инж. Денисом в 1859 г. при устройстве фундаментов Киль-ского моста через р. Рейн.
Предложенный Денисом кессон представлял собой металлический ящик, перевернутый дном вверх, который служил рабочей камерой и был соединен с шахтными трубами и со шлюзом. Такая конструкция выгодно отличается от конструкции цилиндрического кессона, примененного Триже, так как сталь расходуется только для устройства рабочей камеры, а тело опоры устраивается из менее дефицитного материала — камня и бетона. Принцип применения сжатого воздуха в том и другом случае одинаков.
Первый кессон современного типа имел в плане размеры 7 X 24 и высоту 3,8 м. По мере опускания рабочей камеры возводилась кладка тела опоры. Эта же конструкция была успешно применена при строительстве опор мостов в Швейцарии и через р. Преголя в Прибалтике. Однако более простые по форме цилиндрические кессоны были вытеснены не скоро. В России кессоны современного типа впервые применены в 1871 г. при строительстве моста через р. Днепр.
В России также широко применялись бетонные кессоны. Только на строительстве Восточно-Китайской железной дороги построено более 100 мостов на таких кессонах. Бетонные кессоны нашли применение и в 1910—1912 гг. при строительстве больших мостов через pp. Днепр, Дон и др.
Кессонный способ сооружения фундаментов значительно расширил возможности строителей. Там, где опускные колодцы не могли применяться по геологическим условиям (большие валуны, скальные прослойки, грунтовая вода и т.д.), их заменяли кессонами.
В практике мостостроения, особенно в Америке, применялись деревянные кессоны. Например, опоры Бруклинского висячего моста в НькР-йорке с главным пролетом 487 м, построенного в 1870—1883 гг., сооружены на деревянных кессонах размером 32,2 X 52,5 м (площадь их равна 1592 м2). Вероятно, это самые большие кессоны в практике строительства мостов. Расход древесины на один кессон составил 3140 м3, а металла — 250 т. Глубина погружения кессонов — 24 м ниже уровня грунта. Большие кессоны из дерева в США применяли также при строительстве ряда других мостов, в частности при строительстве арочного моста в Сент-Луисе в 1870 г. (25 X 22,1 м), а также в 1911 г. на строительстве Ново-Квебекского моста (16,9 X 55 м) и др. Эти кессоны поражают своими грандиозными размерами, но не совершенством конструкций. Характерной особенностью строительства кессонных фундаментов является то, что размеры кессонов с развитием уровня техники сильно уменьшились.
Деревянные кессоны нашли применение и в России при строительстве опор мостов на сибирских железных дорогах.
При строительстве опор мостов на кессонных фундаментах иногда происходили неожиданные случаи. При строительстве кессонных фундаментов опор моста в Нью-Йорке в 1917 г. под фундамент одной из опор предполагалось опустить три кессона до верха скальных пород. При опускании третьего кессона до проектной отметки была обнаружена широкая расщелина в скале, заполненная мягкой породой. Строители приняли решение перекрыть расщелину железобетонными арками и консольными балками пролетами 18 м, которые опирались на два соседних кессона. Третий кессон был поставлен на это перекрытие. Устройство железобетонных перекрытий производилось на глубине 21,35 м ниже горизонта воды под сжатым воздухом.
Еще более неожиданный случай имел место при строительстве фундамента автодорожного моста в Нью-Уэльсе в Австралии, где пришлось опустить кессон на глубину 75 м от уровня воды. При опускании кессона, когда он был погружен на глубину 15 м в грунт, а кладка была выведена на высоту 39 м, внезапно кессон опустился на 18 м. При этом верх кладки оказался на 14 м ниже поверхности воды, которая в этом месте достигала 35 м. Было решено опустить второй кессон на первый и объединить их. После этого кладка была выведена на 60 м. Колодец сел еще на 7 м. В процессе дальнейшего опускания также имело место скачкообразное опускание кессона на 8 м.
В практике отечественного мостостроения также были аварийные случаи при работе с кессонами. При строительстве моста через р. Днепр в 1871 г. один из кессонов опрокинулся и затонул. Чтобы опустить новый кессон, пришлось затонувший разрубить на части и извлечь. Были также неприятности при строительстве опор одного железнодорожного моста через р. Днепр: из-за неоднородности основания кессона произошел разрыв кладки тела одной из опор. Исправление разрыва кладки происходило в трудных условиях в течение 4 месяцев при круглосуточной аварийной работе. Строительство одной опоры заняло 5 лет.
В СССР кессоны широко применяли при строительстве мостов как на железных, так и на автомобильных дорогах. Наиболее современные методы нашли применение в строительстве новых московских мостов, построенных в 1936—1938 гг.
Наиболее сложные кессонные работы приходилось вести при строительстве Краснохолмского моста в Москве. Кессоны этого моста по своим размерам и глубине опускания относятся к категории выдающихся сооружений. Дно русла реки сложено поверху культурным слоем, а затем следует песок с гравием, глины и суглинки. На глубине 27—30 ж залегает известняк. Под каждую опору было опущено по два железобетонных кессона размером 17,5 X 35 ж с расстоянием между ними 4,5 м. Кессоны имели ромбическую форму. Наибольшая глубина опускания кессона — 34 м. На этом мосту широко применили гидромеханизацию, что значительно повысило темп работ. Это было новинкой в мостостроении. При обычном способе ведения работы восемь кессонщиков выдавали в смену 30 ж3 грунта, а с применением гидромеханизации 200 ж3. Благодаря хорошей организации работа по устройству фундаментов закончена в течение 1 года.
Кессонные фундаменты применили также на строительстве ряда других московских мостов.
Гидромеханизация позволяет вести работу без людей в камере или при небольшом количестве людей. Первый способ получил название автоматического, или слепого. Этот способ испытан в 1937 г. на строительстве Б. Каменного моста, а потом на Наводницком мосту в Киеве в 1939—1940 гг.
В послевоенный период большой вклад в усовершенствование конструкций опор на кессонных фундаментах внесли мостостроители Прибалтики [43]. Ими предложены и внедрены столбчатые опоры на кессонах-оболочках из тонкостенных железобетонных элементов весом 200 т и более.
Конструкция опор на кессонах-оболочках показана на рис. 2. Опора состоит из двух кессонов-оболочек, железобетонного ростверка и тела опоры. Кессоны-оболочки имеют в нижней части горизонтальные перегородки для размещения на них шахтных труб с кессонными аппаратами. Диаметры оболочек доходили до 6,3 м при толщине стенки 15 см. Оболочки изготовляли на стенде. Транспортирование и опускание оболочек производили двумя плавучими шевр-кранами грузоподъемностью до 90—100 т. ичгптпв.прнными гилями стпоителей. После опускания
Кессонов-оболочек до проектной глубины и заполнения внутренней полости бетонной смесью на головы оболочек устанавливали железобетонный ящик-ростверк с несколькими отсеками. Ящик-ростверк служил одновременно опалубкой ростверка. При заполнении ящика-ростверка бетонной смесью его объединяли с оболочками при помощи арматурных каркасов. Для бетонирования ростверка, верх которого находился ниже уровня воды, применяли водонепроницаемые инвентарные перемычки. Над ростверком обычным путем возводили тело опоры. За последние несколько лет построено 15 опор на кессонах-оболочках.
На одном мосту две опоры на кессонах-оболочках построены в трудных геологических условиях: дно русла реки на глубину 3—4 м состояло из песков с содержанием крупных и мелких валунов, а ниже залегал мощный пласт песчаника. Глубина воды составляла от 3,5 до 5 м, а скорость течения реки доходила до 5 м/сек. Возведение опор в .двойном шпунтовом ограждении, рекомендованное в проекте моста, оказалось невыполнимым по геологическим условиям. Поэтому проект моста был пересмотрен, и опоры были построены на кессонах-оболочках. Кессоны-оболочки имели диаметр 5 м на нижнем участке высотой 3 – 4,8 м выше его. Расстояние между оболочками — около 9 м. При опускании оболочек на одной опоре встречались препятствия в виде сплотки деревянных свай и двухтавровых балок. Оболочки были опущены в песчаник на глубину 2,7 м. Все работы по возведению одной оболочки заняли 32 дня.
Особенность опор на кессонах-оболочках — это замена массивных кессонов двумя облегченными железобетонными оболочками, широкое применение сборных элементов с большим монтажным весом и индустриальный метод строительства.
Однако кессонные фундаменты в настоящее время полностью вытесняются другими видами фундаментов, глубокого заложения.
Источник