Внутреннее строение фундамента древних платформ
Главная роль в сложении фундамента древних платформ принадлежит архейским и нижнепротерозойским образованиям. Изучение этого фундамента в пределах обнажений щитов и по данным бурения и геофизики (особенно эффективна магнитометрия) под чехлом плит показало, что он, как правило, имеет крупноблоковое строение. Так, в структуре Балтийского щита различают пять главных блоков, в пределах Украинского — также пять, Канадского щита — шесть и т.д. Некоторые из этих блоков, обычно сложенные протерозоем, сильно вытянуты в одном направлении и поэтому называются поясами, например, Лапландско-Беломорский пояс на Балтийском щите, Становой на юге Алданского щита, Гренвильский — на востоке Канадского. Изучение их внутренней структуры и особенностей развития этих блоков показало отличия от описанного выше для подвижных поясов позднего протерозоя и фанерозоя. Здесь, особенно в архее, распространены специфические структурные элементы, характерные для ранних этапов истории Земли. В архее мы обнаруживаем два главных типа таких элементов — гранит-зеленокаменные области и гранулито-гнейсовые пояса.
Гранит-зеленокаменные области (ГЗО) нередко слагают целые блоки сотни километров в поперечнике. В их пределах преждевсего бросаются в глаза несколько извилистые, параллельные линейные полосы зеленокаменных поясов (ЗКП), сложенные относительно слабометаморфизованными, преимущественно основными, зеленокаменно измененными вулканитами (отсюда название поясов) и отчасти осадочными породами. Протяженность таких поясов составляет многие сотни, изредка больше тысячи (на Канадском щите) километров, ширина — многие десятки — первые сотни километров. Зеленокаменные пояса, впервые описанные в Канаде, ныне установлены на всех континентах, всех платформенных щитах — pppa.ru. Классическими считаются ЗКП Канады, Южной Африки, Австралии, Индии. В нашей стране они изучены на Кольском полуострове, в Карелии, на Воронежском массиве, Украинском и Алданском шитах. В поперечном сечении ЗКП имеют синклинальную структуру, обычно сильно усложненную складчатостью и надвигами. Разделяются ЗКП более широкими гранитогнейсовыми полями, гранича с ними изредка по разломам (Олекминский блок Алданского щита), но чаще вдоль интрузивных контактов гранитов, а иногда по трансгрессивным контактам (Зимбабве). В отдельных регионах (Среднеприднепровский блок Украинского щита, массивы Зимбабве в Южной Африке, Пилбара в Западной Австралии) ЗКП заполняют промежутки между крупными гранитогнейсовыми куполами. Можно полагать, что такой структурный рисунок, как и разломлые ограничения, являются вторичными, а первичный план, как и в большинстве других случаев, был линейным.
Синклинорная структура архейских зеленокаменных поясов: Читрадурга в Южной Индии (I, по С. Дрюри и др., 1983) и Сурского на Украинском щите (II, по А.А. Сиворонову и др., 1984):
1 — гранитогнейсы; 2 — гнейсы; 3-6 — метавулканиты (3 — нерасчлененные, 4 — толеиты и коматииты; 5 — толеиты и джеспилиты; 6 — толеиты, андезиты, дациты); 7 — граувакки; 8 — возможно, базальные образования; 9 — разрывы.
Мощность осадочно-вулканического выполнения 3KП может достигать 10-15 км; обычно оно имеет трехчленное строение. Нижняя часть разреза слагается преимущественно основными, типа толеитовых базальтов, отчасти ультраосновными лавами. Среди последних особенно характерны коматииты (от местности Комати в Южной Африке), отличающиеся резко повышенным содержанием MgO (>20%). Среди более молодых, чем архей, образований они почти не встречаются и свидетельствуют об очень высокой степени плавления астеносферы, что, в свою очередь, рассматривается как следствие резко повышенного в архее теплового потока. В подчиненном количестве в нижней части разреза ЗКП присутствуют осадочные породы — железистые кварциты (джеспилиты), и силициты (кремни). В средней части разреза ЗКП вулканогенные породы также занимают основное место, но состав их меняется — это уже главным образом эффузивы и пирокластолиты среднего и кислого состава, вплоть до дацитов и риолитов; содержание осадочных пород, в том числе обломочных, заметно повышается. Петрохимически эти вулканиты близки, если не тождественны, более молодым островодужным вулканитам известково-щелочной ассоциации. В верхней части разреза ЗКП обломочные породы уже занимают господствующее положение, вследствие эта часть разреза напоминает молассовую формацию, типичную для более молодых подвижных поясов. Эта часть разреза от нижней обычно отделена несогласием, времени образования которого отвечает внедрение диапировых или межпластовых плутонов гранитоидов. Заканчивается развитие ЗКП складчато-надвиговыми деформациями, метаморфизмом и образованием новой генерации гранитоидов, в отличие от первой обычно характеризуемой преобладанием К2О над Na2O.
Основная масса ЗКП образовалась между 3,5 и 2,5 млрд лет; в это время сменилось несколько их поколений, потому что длительность образования этих структур составляла, как правило, не более 100 млн. лет, обычно меньше. Небольшое число ЗКП возникло в первой половине раннего протерозоя на Гвианском (Южная Америка) и Леоно-Либерийском (Западная Африка) щитах, некогда составлявших единую ГЗО. В ряде ГЗО было замечено, что пояса омолаживаются в определенном направлении. Значение этого факта мы рассмотрим ниже.
Присутствие в ряде регионов в основании разреза ЗКП конгломератов с галькой гранитов и гнейсов позволяет предполагать,что грайней мере часть ЗКП закладывалась в условиях раздвига, рифтинга более древней континентальной коры. Эта кора, представленная «серыми гнейсами» — гранитогнейсами тоналитового типа, ныне выступает среди гранитогнейсовых полей, разделяющих ЗКП, хотя основная площадь этих полей сложена гранитоидами, более молодыми, чем смежные ЗКП. Поскольку вулканиты сеедины разреза близки к островодужным, а магматиты нижней части — к офиолитам, предполагается аналогия ЗКП с молодыми задуговыми бассейнами.
Гранулито-гнейсовые пояса (ГГП), второй главный тип раннедокембрийскйх структур, разделяют и окаймляют гранит-зеленокаменные области. Появляются они в конце архея и получают широкое развитие в протерозое, но в их строении обычно значительное участие принимает архейский материал. Пояса эти отличает высокий (амфиболитовая — гранулитовая фации) и многократно проявленный метаморфизм, сложная и также многократная складчатость, надвиги, причем характерно пологое надвигание на смежные ГЗО. Внутренняя структура нередко осложнена гранитогнейсовыми куполами и крупными плутонами габбро-анортозитов. Типичны и пегматитовые поля. Классические примеры — Гренвильский в Северной Америке, Мозамбикский в Восточной Африке, Лапландско-Беломорский и Становой у нас — pppa.ru. Другой тип подвижных поясов, свойственный уже только ранму протерозою, — это протогеосинклинали (ПГС) Они протягиваются на многие сотни, нередко более тысячи километров при ширине в первые сотни километров и обычно четко линейны, например Курско-Криворожская система Восточно-Европейской платформы или Трансгудзонская и Пенокийская Северо-Американской платформы. В большинстве случаев в строении этих подвижных систем, как и их более молодых аналогов, четко выделяются внешние и внутренние зоны. Первые подстилаются непереработанным или слабо переработанным архейским фундаментом; их осадочный комплекс образован неметаморфизованными шельфовыми карбонатными и обломочными породами. Практически моноклинальное залегание сменяется в направлении внутренних зон чешуйчато-надвиговым строением, причем надвиги развиваются по более ранним листрическим сбросам. В этом же направлении возрастают глубоководность и мощность осадков. Появляются покровы и силлы основных магматитов. Легко заметить полную аналогию с внешними зонами позднепротерозойско-фанерозойских орогенов. Во внутренних зонах появляются флиш и черносланцевые толщи, обильнее становятся основные вулканиты, приближающиеся по составу к океанским толеитам; это явно отложения континентальных склонов, подножий и окраинных морей. Еще дальше в тылу рассматриваемых систем нередко встречаются образования вулканических дуг или вулканоплутонических поясов, включая гранитные батолиты.
Возникает вопрос: на какой коре развивались эти внутренние зоны? Глубоководный характер осадков и известково-щелочной состав вулканитов указывают на то, что это не была нормальная континентальная кора, как во внешних зонах, а кора либо переходного, либо даже океанского типа. О вероятности последнего свидетельствуют все учащающиеся находки в раннепротерозойских подвижных поясах офиолитов, наиболее полная ассоциация которых встречена в свекофенидах северо-восточной Финляндии Однако палеомагнитные данные показывают, что ширина многих из этих бассейнов с океанской корой была не больше 1000 км, ибо она лежит в пределах точности этих измерений. Но для некоторых бассейнов, например Трансгудзонского в Канаде, те же данные указывают на гораздо большую ширину, уже сравнимую с шириной современных океанов, — 3000 км. То же вероятно и для Свекофеннского бассейна Балтийского щита.
Источник
Строение фундамента древних платформ
Древние платформы (кратоны) — платформы с фундаментом докембрийского возраста. Представляют собой ядра материков и занимают обширные части их площади (миллионы квадратных километров). Они сложены типичной континентальной корой мощностью 35—45 км.
Литосфера в их пределах достигает мощности 150—200 км, а по некоторым данным — до 400 км. Они обладают изометричной, полигональной формой.
Значительные площади в пределах платформ занимает неметаморфизованный осадочный чехол толщиной 3—5 км, в наиболее глубоких впадинах достигающий 10—12 км, а в исключительных случаях (Прикаспийская низменность) до 20—25 км. В состав чехла помимо осадочных формаций могут входить покровы траппов. Древние платформы, имеющие раннедокембрийский метаморфический фундамент, составляют древнейшие и центральные части материков и занимают около 40 % их площади; термин «кратон» применяют только к ним.
Древние платформы делятся на 3 типа:
1. Лавразийский — Северо-Американская (Лавренция), Восточно-Европейская, Сибирская (Ангарида)
2. Гондванский — Южно-Американская, Африкано-Аравийская, Индостанская, Австралийская, Антарктическая
3. Переходный — Сино-Корейская (Хуанхэ), Южно-Китайская (Янцзы)
Важнейшая роль в строении фундамента древних платформ принадлежит архейским и нижнепротерозойским образованиям, имеющим крупноблоковое строение. Так, в структуреБалтийского щита различают пять главных блоков, в пределах Украинского щита — также пять, Канадского щита — шесть и т. д. В архейских комплексах распространены особые структурные элементы, характерные для ранних этапов истории Земли.
На всех щитах древних платформ выделяются три комплекса пород этого возраста:
1. Зеленокаменные пояса представляют собой мощные толщи закономерно перемежающихся пород от ультраосновных и основных вулканитов (от базальтов и андезитов к дацитам и риолитам) к гранитам. Эти пояса имеют протяженность до 1000 км при ширине до 200 км.
2. Комплексы орто- и парагнейсов образуют в сочетании с гранитными массивами поля гранитогнейсов. Гнейсы отвечают по составугранитам и обладают гнейсовидной текстурой.
3. Гранулитовые (гранулито-гнейсовые) пояса, под которыми понимаются метаморфические породы, сформировавшиеся в условиях средних давлений и высоких температур (750—1000 °C) и содержащие кварц, полевой шпат и гранат.
Наряду с ареалами «серых гнейсов» раннего архея, три перечисленных выше типа архейских образований слагают преобладающую часть щитов древних платформ.
Платформы подразделяются на участки выходов на поверхность пород фундамента — щиты и на не менее крупные участки, покрытые чехлом — плиты.
Щиты легко выделяются в платформах северного ряда, где они со всех сторон окружены чехлом, но значительно труднее в платформах южного ряда, особенно Африканской иИндостанской, на большей части которых фундамент обнажается на поверхности, а чехол распространён более ограниченно, в пределах замкнутых впадин. Молодые платформы почти целиком представляют собой плиты, а щиты и массивы здесь встречаются в виде исключения. Таким образом, плиты — преобладающий элемент древних и собственно молодых платформ. В пределах плит различают структурные элементы подчинённого (второго) порядка: антеклизы, синеклизы, авлакогены, своды, впадины, валы и депрессии.
Астеносфера и литосфера
В 1914 г. геофизик Баррел предложил, что область жидкого размягченного материала, обеспечивающего изостатическое плавание, — это некая неустойчивая глубинная оболочка, названная астеносферой. Ее достоверно удалось обнаружить в конце 60-х годов:
-Астеносфера — сейсмической волновод, или слой пониженных скоростей сейсмических волн. Он работает по эффекту полного внутреннего отражения. Кроме того, наблюдалось нарастание Vp/Vs в этом слое, т.е. в большей степени подавляются поперечные волны, которые не проходят через жидкость, следовательно, материал астеносферы размягчен.
-По данным МТЗ (магнито-теллурического зондирования): в этом слое обнаружена аномально глубокая для этих глубин электрическая проводимость.
Залегает астеносфера внутри верхней мантии, на ней плавает надастеносферная часть мантии и земная кора — литосфера.
Толщина астеносферного слоя очень резко меняется. Верхняя граница астеносферы в пределах океанов: в зона СОХ она подходит совсем к поверхности, рядом с осью рифта (глубина — первые км), при приближении к континенту глубина кровли астеносферы достигает 80 км. Под континентами кровля астеносферы залегает на глубине от 100 до 300 км. Глубина подошвы более или менее равномерна — 300 — 600 км
Плотность литосфера не везде одинакова: под древними кратонами земная кора утолщается и уплотняется, тоже самое происходит и с мантийной литосферой.
Кроме главного астеносферного слоя, есть и другие ослабленные горизонты внутри толстой континентальной литосферы:
-На глубине 10-20 км под древними платформами
-4,5 — 7 км — слои, насыщенные флюидами (в разрезе Кольской сверхглубокой скважины)
На графике зависимости эффективной прочности от глубины прочность увеличивается с глубиной, резко уменьшаясь на границе К (10-20 км) и Мохо (зоны механического срыва).
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Источник