Свайные фундаменты опор освещения

Фундамент из винтовых свай под опору освещения

В статье рассказывается о проектировании и устройстве фундаментов из винтовых свай под опоры освещения.

Содержание статьи:

Опоры освещения – это столбы, которые устанавливаются для освещения автомобильных дорог, жилых территорий и т.п.

1. Проектирование стоек освещения

Проектирование опор освещения включает:

  • Выбор формы, материала и высоты стоек.

Столбы бывают конические (круглые в сечении) и пирамидальные (граненые, восьмигранные). Форма конуса считается более предпочтительной, так как такая конструкция способна выдерживать порывы ветра до 44 м/с.

Материал стоек – чаще металл. Выдерживая перепады температур от -50 до +50 градусов, он позволяет устанавливать конструкции в разных климатических условиях.

Высота столбов, как правило, варьируется от 4 до 12 метров (для установки над проезжей частью, над пешеходной зоной, для декоративного освещения) и рассчитывается в соответствии с «Правилами устройства электроустановок».

Учитывает все статические (постоянные) и динамические воздействия на стойки. К постоянным нагрузкам относят суммарный вес самой опоры, арматуры, консолей, фланцевых оснований, светильников и проводов (расчеты выполняются с коэффициентами, разработанными для различных конфигураций стоек, консолей и светильников).

Читайте также:  Армирование ленточного фундамента своими руками для бани

К динамическим воздействиям относят нарастание нагрузок (толкающее усилие), вызванное порывами ветра (расчеты выполняются с коэффициентом динамического нарастания, который учитывает увеличение нагрузки в присутствии колебаний, вызванных порывами ветра), гололедно-ветровые нагрузки.

  • Проведение исследований на устойчивость.

Расчет на устойчивость проводится с выполнением опытных испытаний на изгиб, кручение, опрокидывание под воздействием динамических сил.

2. Проектирование фундаментов опор освещения

Тип, габариты и несущая способность фундаментов опор освещения рассчитываются в каждом конкретном случае в зависимости от:

  • региона эксплуатации (ветровая нагрузка, глубина промерзания грунта);
  • результатов инженерно-геологических изысканий для строительства (тип грунта);
  • сведений о сейсмичности района строительства;
  • данных, характеризующих назначение, конструктивные и технологические особенности осветительных столбов, фундаментов и условий их эксплуатации;
  • действующих на опорные конструкции и фундаменты нагрузок;
  • условий существующей застройки и влияния на нее нового строительства;
  • размеров земельных участков для размещения опоры наружного освещения или прожекторной мачты.

Фундаменты должны соответствовать требованиям прочности, то есть способности воспринимать воздействия боковой и вертикальной статических нагрузок от опоры.

Глубина закладки фундамента определяется высотой столба.

Компания «ГлавФундамент» имеет опыт проектирования и установки фундаментов из винтовых свай под опоры освещения, к примеру, для участка автодороги 1Р242 «г. Пермь-граница Свердловской области», протяженностью 448 км.

3. Реконструкция автодороги 1Р242

Геологические изыскания показали, что площадка строительства представлена насыпными грунтами, состоящими из влажной и водонасыщенной смеси песка средней крупности и пылеватого коричневого полутвердого суглинка. На основании этих данных в системах автоматизированного проектирования был выполнен численный расчет несущей способности винтовых свай по двум группам предельных состояний.

Моделирование выполнялось в трехмерной постановке, в качестве модели материала для стальной сваи принималась модель Мизеса, в качестве модели грунта – упругопластическая модель с критерием разрушения Кулона–Мора.

По результатам численного моделирования при требуемой проектной несущей способности максимальная осадка сваи составила 12,0 мм, что не превысило предельного значения средней осадки фундамента 150 мм (СП 24.13330.2011 «Свайные фундаменты»). Следовательно, несущая способность по грунту обеспечивается.

Расчеты по второй группе предельных состояний показали, что максимальное горизонтальное перемещение верха сваи благодаря элементу сопротивления боковым нагрузкам составляет 25 мм, следовательно, условие по деформациям также обеспечивается.

Численный анализ результатов расчета по оценке несущей способности сваи по материалу показал, что несущая способность по материалу ствола винтовой сваи при горизонтальной нагрузке на опору освещения обеспечивается с запасом, т.к. максимальные эквивалентные напряжения, возникающие в стволе сваи, составляют 220 Мпа и не превышают значение расчетного сопротивления стали (235 МПа). Условие по обеспечению несущей способности стальных элементов выполняется с запасом, при этом коэффициент запаса равен 1,07.

В результате расчетов было принято решение использовать винтовые сваи для сезоннопромерзающих грунтов широколопастные с двумя лопастями СВС 500(8)/1- 500(8)/1 — 219(6)/3000 с элементом сопротивления боковым нагрузкам.

Для обеспечения минимального нарушения структуры грунта в процессе установки и включения в работу сваи максимального объема околосвайного массива грунта, на основании данных о грунтовых условиях был осуществлен подбор конфигурации лопасти винтовой сваи (лопасть для несвязных грунтов). Подробнее – «Ключевые принципы подбора параметров лопастей винтовых свай».

Расчет долговечности с проверкой остаточной толщины стенки ствола винтовой сваи на соответствие проектным нагрузкам подтвердил, что рекомендованные марка стали (подробнее «Использование сталей разных марок в производстве винтовых свай») и толщина металлопроката (подробнее «Расчет толщины стенки ствола на основании требований к сроку службы») обеспечат срок службы сооружения, соответствующий требованиям ГОСТ 27751-2014 «Межгосударственный стандарт. Надежность конструкций и оснований. Основные положения».

Источник

Уличное освещение

В темное время суток жителям российских «городов и весей» просто не обойтись без надежного и правильно обустроенного уличного освещения. Оно для всех нас настолько привычно и кажется самим собой разумеющимся только тогда, когда по каким-либо причинам перестает функционировать и приходится следовать в потемках, что, конечно же, не очень удобно, а порой даже и опасно. Специалисты подразделяют все уличное освещение на основное и декоративное, и если второе часто обеспечивается при помощи монтажа фонарей на стенах, заборах и других конструкциях, то для первого в подавляющем большинстве случаев используются специальные опоры. Изготавливаются они чаще всего из железобетона, несколько реже представляют собой металлические или даже деревянные конструкции. Все они должны быть надежно и прочно установлены, для чего нередко используются винтовые сваи.

Они используются для строительства фундаментов, на которых устанавливаются опоры. Именно на винтовых сваях сооружать их, как показывает практика, проще и быстрее всего. Такие фундаменты под опоры освещения возводятся на городских улицах, обочинах автомагистралей, в дачных и коттеджных поселках.

Винтовые сваи для освещения

Опоры освещения представляют собой достаточно массивные конструкции, которые оказывают значительное давление на грунт. Поэтому их в него или заглубляют, или устанавливают на прочном фундаменте, способном такую нагрузку выдержать (причем со значительным запасом). Одним из наиболее рациональных способов при этом оказывается использование винтовых свай для освещения, которые производятся, в том числе и нашей компанией.

Применение таких винтовых свай мало чем отличается от тех случаев, когда они устанавливаются для создания фундаментов различных строений. Как правило, эти конструкции в своей верхней части имеют специальную металлическую платформу. Она составляет с телом сваи единое целое, и именно к ней крепится опора.

Перед тем как устанавливать винтовую сваю в качестве основы для фонарного столба, специалисты тщательно просчитывают ту нагрузку, которая на нее будет приходиться. Кроме этого обязательно учитываются разнообразные характеристики грунта (его плотность, наличие камней и валунов и т.п.). На основании этих расчетов определяется та несущая способность, которую должны иметь эти сваи.

Процесс монтажа винтовых свай для установки опор освоен специалистами очень хорошо и поэтому не занимает много времени. Он состоит в том, что эти конструкции привозятся на место установки и просто «заворачиваются» в почвы в тех местах, где необходимо поставить опоры освещения. Сама эта процедура производится в большинстве случаев при помощи специального оборудования. Сразу после того, как свая установлена, можно осуществлять монтаж опоры на ней.

Следует заметить, что поверхности этих винтовых свай имеют специальное покрытие. Оно препятствует электрохимической коррозии и существенно продлевает срок службы конструкции. Он, как показывает практика, составляет не менее ста лет при условии, что сваи производятся в заводских условиях со строгим соблюдением технологи их изготовления.

Преимущества использования винтовых свай для установки опор освещения

Сейчас фонарные столбы на винтовых сваях устанавливаются все чаще, поскольку такая технология монтажа имеет немало преимуществ. К основным из них следует отнести:

  • Высокую скорость установки;
  • Низкие трудозатраты на монтаж;
  • Минимальную стоимость работ;
  • Возможность использования винтовых свай в грунтах почти всех типов.

Винтовые сваи очень долговечны и в процессе всего срока эксплуатации надежно фиксируют опоры освещения в изначальном положении. При монтаже они, благодаря особенностям и специфике своей конструкции, уплотняют окружающий их грунт, что препятствует их отклонению от вертикали. Винтовые сваи можно устанавливать в любое время года, причем даже в тех регионах, которые отличаются высокой сейсмической активностью. Они практически не нарушают целостность грунта, что также относится к их несомненным преимуществам.

Использование винтовых свай для установки на них опор уличного освещения выгодно и с экономической точки зрения. Дело в том, что эти конструкции обходятся совсем недорого, что существенно удешевляет монтаж в целом.

Читайте также:
Проектирование и расчет свайных оснований
Что такое свайно-винтовой фундамент
Свайно-винтовой фундамент для ангаров

«© 2021 ООО «ЗСК» — завод винтовых свай.

Россия, г. Москва, Варшавское шоссе д.33, 3 этаж, офис № 5

Источник

Фундаменты из винтовых свай под опоры ЛЭП, ВЛ и контактной сети

Статья содержит информацию об истории применения фундаментов из винтовых свай под опоры ЛЭП, ВЛ и контактной сети, а также о ключевых принципах проектирования оснований подобных объектов, используемых в работе специалистами компании «ГлавФундамент».

Содержание статьи:

Впервые свайно-винтовые фундаменты были применены при строительстве опор ЛЭП, ВЛ и контактной сети еще в 60-е годы 20 века.

Тогда все исследования в этой области были направлены на поиск конструкций свай, обеспечивающих снижение энергоемкости процесса их погружения. Поэтому значительная часть лопасти располагалась на конусе (стальная винтовая свая с одной лопастью в 1,25 витка, начинающейся на скошенной части ствола и плавно увеличивающейся в ширину, изобретенная Виктором Железковым).

Действительно, такое расположение лопасти облегчает погружение сваи даже в грунты с высокой плотностью, но ее несущая способность при этом существенно снижается. Это происходит из-за технологических особенностей погружения и конструктивных параметров сваи: во время установки возникают изгибающие моменты, являющиеся прямым следствием случайных эксцентриситетов, а вдоль ствола появляются зоны разуплотнения (пустоты и «зазоры» в контактной области «ствол-грунт»), что в процессе работы либо обеспечивает в незначительной степени, либо вовсе не обеспечивает (при использовании свай малых и средних диаметров) мобилизацию сил сопротивления грунта по стволу.

Чтобы свести к минимуму воздействие перечисленных факторов и повысить несущую способность приходилось увеличивать диаметр ствола и лопасти, что в свою очередь вело к увеличению материалоемкости.

За прошедшие годы подход к проектированию и строительству фундаментов опор ЛЭП, ВЛ и контактной сети из винтовых свай изменился. Многие специалисты отказались от увеличения диаметров ствола и лопасти, как единственного метода повышения несущей способности, добиваясь соответствия требованиям проектной документации путем назначения более оптимальных геометрических и конструктивных параметров винтовых свай.

Тем не менее, результаты расчетов данных конструкций винтовых свай на вдавливающие, выдергивающие и горизонтальные нагрузки аналитическими методами, базирующимися на табличных значениях коэффициентов, демонстрируют значительные расхождения с результатами, полученными во время полевых испытаний грунтов натурными сваями.

В связи с этим специалисты компании «ГлавФундамент» при оценке несущей способности используют численное моделирование статических испытаний грунтов сваями: создание расчетных схем для численного моделирования позволяет получать достоверные результаты, когда расхождение в величине несущей способности даже для слабых грунтов не превышает 20%.

Приведем в качестве примера расчет несущей способности винтовых свай для фундаментов опор ЛЭП (трассы ВЛ 110 кВ) на территории Русского месторождения, которое является уникальным по величине запасов нефти (геологические запасы составляют около 1,4 млрд тонн, извлекаемые запасы – 422 млн тонн).

Перед сотрудниками компании «ГлавФундамент» стояло несколько задач:

выполнить численные расчеты несущей способности винтовых свай по грунту на вдавливающие и выдергивающие нагрузки и по материалу;

выполнить аналитический расчет на действие сил морозного пучения;

выполнить прочностные расчеты узла соединения сваи с ростверком из стальных элементов.

1. Климатические условия района строительства

Район по скоростному напору ветра III. Нормативное ветровое давление 650 Па, скорость ветра – 32 м/с.

Район по гололеду III. Нормативная толщина стенки гололеда 20 мм.

Сейсмическая активность района 5 баллов.

2. Инженерно-геологические условия района строительства

Участок строительства располагается на территории Ямало-Ненецкого автономного округа.

Район изысканий относится к долине реки Таза, пойму которой слагают аллювиальные отложения, находящиеся как в многолетнемерзлом, так и в талом, обычно сильно увлажненном состояниях.

Залегающие с поверхности мерзлые толщи развиты очень широко, их мощность в пределах поймы изменяется от 5-10 м до 150-200 м, но на большей ее части не превышает 50 м. среднегодовые температуры многолетнемерзлых пород на большей части территории колеблются от 0 до -2ºС.

По результатам инженерно-геологических изысканий и последующего анализа пространственной изменчивости частных значений показателей физико-механических свойств грунтов грунты участка строительства выделены в 22 инженерно-геологических элемента:

супесь пластичная с прослоями суглинка;

супесь текучая с прослоями песка;

супесь текучая с примесью органических веществ;

песок мелкий средней степени водонасыщения, средней плотности;

песок мелкий насыщенный водой, средней плотности;

глина твердомерзлая слабольдистая слоистой криотекстуры;

суглинок твердомерзлый слабольдистый слоистой криотекстуры с прослоями песка;

суглинок твердомерзлый слабольдистый слоистой криотекстуры с примесью органических веществ;

суглинок твердомерзлый льдистый слоистой криотекстуры с прослоями глины;

суглинок твердомерзлый сильнольдистый слоистой криотекстуры;

супесь твердомерзлая слабольдистая слоистой криотекстуры с прослоями песка;

супесь твердомерзлая слабольдистая слоистой криотекстуры с примесью органических веществ;

супесь твердомерзлая льдистая слоистой криотекстуры;

супесь твердомерзлая сильнольдистая слоистой криотекстуры;

песок мелкий твердомерзлый слабольдистый массивной криотекстуры;

песок пылеватый твердомерзлый слабольдистый массивной криотекстуры с прослоями супеси;

торф пластичномерзлый среднеразложившийся слабольдистый слоисто-сетчатой криотекстуры;

торф средней влажности среднеразложившийся нормальнозольный.

В гидрогеологическом отношении район изысканий расположен в северной части Западно-Сибирского артезианского бассейна, на территории Тазовского бассейна, отличительная особенность которого – расположение в пределах зоны развития многолетнемерзлых пород.

3. Оценка геотехнической ситуации на участке строительства

Чтобы оценить геотехническую ситуацию, специалистам необходимо было рассмотреть основные факторы, которые могли привести к развитию деформации проектируемых опор.

Преобладающее значение среди них имели:

1. Наличие в основании опор мощной толщи слабых глинистых грунтов.

В основании проектируемых опор залегают слабые глинистые отложения текучей и текучепластичной консистенции, мощность которых в основании сооружения достигает 9 м.

Так как указанные грунты обладают существенной сжимаемостью и малой водопроницаемостью, большие неравномерные осадки основания за счет их дополнительного нагружения могут продолжаться десятки и даже сотни лет.

2. Наличие грунтов, подверженных силам морозного пучения.

Чтобы обеспечивалась устойчивость конструкций фундамента на действие касательных сил морозного пучения, они должны обладать необходимым сопротивлением на действие выдергивающих нагрузок.

4. Назначение винтовых свай

Учитывая сложные климатические и грунтовые условия района строительства, а также специфику возводимого сооружения, специалисты отдела научно-исследовательских и опытно-конструкторских разработок компании «ГлавФундамент» рекомендовали под объект сваи широколопастные многолопастные составные (из труб переменного сечения) со следующими конструктивными и геометрическими параметрами:

диаметр лопастей – 500-1000 мм;

толщина лопастей – 14 мм;

конфигурация лопастей – для текучепластичных грунтов;

диаметр ствола – 159-325 мм;

толщина стенки ствола – 10 мм;

длина винтовой сваи – 5 000-10 000 мм.

Выбор толщины металлопроката обусловлен значительной коррозионной активностью грунтов (КАГ) площадки строительства. Для уточнения правильности подбора данного параметра после выполнения расчета срока службы свай в грунте выполняется проверка соответствия остаточной толщины стенки ствола проектным нагрузкам и требованиям ГОСТ 27751-2014 «Надежность строительных конструкций и оснований. Основные положения».

Подбор конфигурации лопасти, соответствующей грунтовым условиям площадки строительства, позволяет минимизировать нарушения структуры грунта в процессе установки винтовой сваи, что обеспечивает соответствие несущей способности требованиям проектной документации (подробнее «Ключевые принципы подбора параметров лопастей»).

4.1. Оценка несущей способности свай по грунту

Стандартная методика оценки несущей способности винтовых свай в соответствии с СП 24.13330.2011 базируется на упрощенных моделях взаимодействия грунтов и свай, поэтому не обладает достаточной точностью.

Это требует проведения численных расчетов, позволяющих моделировать работу сваи в полевых условиях. В связи с этим для оценки несущей способности многолопастных модификаций специалисты отдела НИОКР использовали системы автоматизированного проектирования (САПР), базирующиеся на методе конечных элементов.

В первую очередь для оценки несущей способности сваи по грунту выбирается определяющая модель грунта. В данном случае была выбрана упруго-пластичная модель с критерием разрушения Кулона – Мора.

Затем выполняется моделирование в трехмерной (пространственной) постановке. Моделируются следующие виды воздействия:

для оценки несущей способности на вдавливание;

для оценки несущей способности на выдергивание.

По результатам расчета было установлено, что при использовании указанных модификаций винтовой сваи условие по обеспечению несущей способности на действие вдавливающих и выдергивающих нагрузок обеспечивается с запасом.

На этом этапе также были смоделированы расстояние между лопастями, шаг и угол наклона лопастей. Необходимость расчета обусловлена сложной зависимостью этих параметров от грунтовых условий и характера нагрузок от строения (подробнее «Особенности расчета многолопастных винтовых свай»).

4.2. Устойчивость на воздействие сил морозного пучения

Проверка на устойчивость на воздействие касательных сил морозного пучения проводится в соответствии с СП 25.13330.2011 «Основания и фундаменты на вечномерзлых грунтах».

Расчет был выполнен для наихудших грунтовых условий. В результате было установлено, что устойчивость сваи на воздействие касательных сил морозного пучения выполняется с запасом.

4.3. Оценка несущей способности свай и металлических ростверков по материалу

Для расчета прочности и жесткости (по материалу) элементов ростверка и винтовых свай также в системах автоматизированного проектирования были созданы трехмерные модели.

По результатам численного моделирования можно сделать вывод, что максимальные эквивалентные напряжения (180 МПа) не превышают значение расчетного сопротивления стали (235 МПа). Следовательно, условие по обеспечению несущей способности стальных элементов выполняется с запасом.

4.4. Расчет элементов ростверка по деформациям

В соответствии с СП 63.13330.2012 расчет металлических элементов по деформациям производят из условия, по которому прогибы или перемещения конструкций от действия внешней нагрузки не должны превышать предельно допустимых значений прогибов или перемещений.

Было установлено, что условие по деформации выполняется.

4.5. Выводы и рекомендации

Результаты расчетов свидетельствуют о возможности применения рекомендованных многолопастных составных винтовых свай и металлических ростверков.

Для окончательных расчетов несущую способность винтовых свай было рекомендовано принимать по результатам испытаний свай статической нагрузкой в соответствии с ГОСТ 5686-2012 «Грунты. Методы полевых испытаний грунтов сваями».

Источник

Оцените статью