- Свайный фундамент под колонны каркасных зданий
- Содержание статьи:
- 1. Расчет фундамента колонны
- 2. Строительство производственно-складского корпуса на территории фабрики «Керама Марацци»
- Возможность применения одиночной сваи под колонну (безростверкового фундамента, свая-колонна и т.д)
- Свайный фундамент под колонну
- А. РАСЧЕТ ПО ПРОЧНОСТИ РОСТВЕРКОВ ПОД СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ
- Содержание статьи:
- 1. Расчет фундамента колонны
- 2. Строительство производственно-складского корпуса на территории фабрики «Керама Марацци»
- 8.1.4. Буронабивные сваи
- ТАБЛИЦА 8.4. НОМЕНКЛАТУРА И ТИПОРАЗМЕРЫ БУРОНАБИВНЫХ СВАЙ
- ТАБЛИЦА 8.5. ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ВИД АРМИРОВАНИЯ БУРОНАБИВНЫХ СВАЙ
- ТАБЛИЦА 8.6. МАТЕРИАЛЫ И ХАРАКТЕРИСТИКИ ПРОДОЛЬНОЙ АРМАТУРЫ ДЛЯ БУРОНАБИВНЫХ СВАЙ
- ТАБЛИЦА 8.7. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ БУРОНАБИВНЫХ СВАЙ
- ТАБЛИЦА 8.8. ГЕОМЕТРИЧЕСКИЙ ОБЪЕМ БЕТОНА БУРОНАБИВНЫХ СВАИ
Свайный фундамент под колонны каркасных зданий
Статья расскажет о видах фундаментов, используемых под колонны каркасных зданий, а также об устройстве свайного фундамента под колонну.
Содержание статьи:
При строительстве каркасных гражданских и промышленных зданий и сооружений в качестве основных несущих элементов часто выступают колонны. На возведенный каркас позже монтируются все остальные конструкции, поэтому опоры:
- должны выдерживать не только собственный вес, но и нагрузки от остальных частей постройки;
- должны быть установлены с минимальными отклонениями, что возможно только в случае грамотного устройства их фундаментов.
Эти задачи решают разные типы фундаментных конструкций:
Монолитные и сборные выполняются из армированного железобетона. Свайные – с использованием как бетонных, так и стальных винтовых свай.
Монолитные фундаменты универсальны, так как на них можно установить и железобетонные, и металлические опоры. Сборные больше подходят для установки железобетонных элементов.
Фундаменты из винтовых свай, благодаря возможности устройства для них как металлических, так и монолитных железобетонных ростверков, также позволяют устанавливать любые элементы.
В зависимости от типа опоры выбирается и вид соединения:
- для железобетонных элементов – установка основания колонны в специальное углубление с последующей заливкой бетоном для фиксации;
- для металлических элементов – болтовое/сварное крепление.
1. Расчет фундамента колонны
Чтобы корректно рассчитать свайное основание для подобных несущих элементов, необходимо обладать данными:
- о физико-механические свойствах грунта, которые могут быть получены в ходе выполнения динамического зондирования грунтов (методика, разработанная специалистами ГК «ГлавФундамент» на основании ГОСТ 19912 «Грунты. Методы полевых испытаний сваями статическим и динамическим зондированием», подробнее «Геотехнические и геолого-литологические исследования и измерения коррозионной агрессивности грунтов»);
- о нагрузках.
Компания «ГлавФундамент» неоднократно участвовала в строительстве объектов, требовавших устройства свайных фундаментов под колонны.
2. Строительство производственно-складского корпуса на территории фабрики «Керама Марацци»
При проектировании нового производственно-складского корпуса (одноэтажного здания для производства и хранения продукции площадью более восьми тысяч квадратных метров) на территории фабрики «Керама Марации» возникла необходимость в научно-техническом сопровождении специалистами «ГлавФундамент».
Это связано с тем, что по данным инженерно-геологических изысканий участок строительства имеет сложные грунтовые условия, обусловленные напластованием разных грунтов – насыпных, глинистых (от мягкопластичной до полутвердой консистенции) и мелких песчаных (различной плотности). Более того, данные грунты имеют большой перепад как по мощности слоев, так и по распространению в плане площадки.
Таким образом, перед отделом НИОКР стояла задача по выбору оптимальной конструкции винтовых свай под каждую зону с относительно однородными грунтовыми условиями.
В результате под объекты были рекомендованы винтовые сваи с диаметром ствола 325 мм, которые различались по:
- количеству лопастей;
- конфигурации лопастей;
- расстоянию между лопастями;
- шагу, углу наклона и диаметру лопастей;
- длине (от трех до семи метров).
Для включения в совместную работу винтовой сваи и максимального объема околосвайного грунта сваи моделировались с различным расстоянием между лопастями (подробнее «Особенности расчета многолопастных винтовых свай»). Помимо межлопастного расстояния, на включение в работу грунта влияют и такие расчетные величины, как шаг, угол наклона и конфигурация лопастей (подробнее «Ключевые принципы подбора параметров лопастей»), которые позволяют установить сваю с минимальным нарушением структуры грунта.
Выбор толщины металлопроката обусловлен коррозионной агрессивностью грунтов площадки строительства. Для уточнения правильности подбора данного параметра после выполнения расчета срока службы свай в грунте выполняется проверка соответствия остаточной толщины стенки ствола проектным нагрузкам и требованиям нормативной документации (подробнее «Расчет толщины стенки ствола»).
Расчет долговечности выполняется без учета покрытия. Это связано с тем, что в процессе погружения винтовая свая испытывает значительное абразивное воздействие, что не позволяет гарантировать целостность любого покрытия (подробнее «Сравнительный анализ различных типов антикоррозийного покрытия»).
Для подтверждения принятого проектного решения специалистами компании были проведены полевые испытания грунтов статическими вдавливающими нагрузками, которые подтвердили требуемую несущую способность свай.
В настоящее время проект успешно реализован.
Источник
Возможность применения одиночной сваи под колонну (безростверкового фундамента, свая-колонна и т.д)
Всем доброго времени суток. Форум прошерстил, вопрос хочу еще раз поднять.
В разработке имеется несколько проектов фундаментов, интересует возможно ли в каком-либо применить одиночную сваю под колонну?
1. Одноэтажный каркас(монолитные колонны, балки, плиты, плита пола по грунту). N на колонну 70-80т. Геология: на 1.5м ниже подошвы ростверка галечник, следовательно свая-стойка (несет по грунту больше 200т.)
Пока решение: на колонну куст из 4-х забивных свай длиной 3м, половина длины свай срубается, выкидывается (м.б. сделать буронабивные?)
2. Двухэтажный каркас(монолитные колонны, балки, плиты, плита пола по грунту). N на колонну до 200т. Геология та же, свая несет дохрена.
Пока решение как и в п.1
3. Одно/двухэтажная легкая промка с кранами (металлокаркас, сендвич). Нагрузка на колонну N 30т, M Q около 3т, геология похуже — висячей сваей можно набрать 40-50т длиной 6-7м.
Пока решения нет, решил спросить на форуме
Понятно, сделать по 4 забивных сваи под колонну — самое надежное и железобетонное решение по всем рекомендациям, но может стоит сэкономить деньги заказчика?)
Беглый анализ литературы и норм: трехсвайных ростверков в пособии по проектированию ростверков под колонны не существует, двухсвайные под краны нельзя, про одиночные спрашиваю у Вас.
По факту не известно как они одиночную сваю выполнят в натуре, плюс минус отклонения в плане уже чревато.. Нужно точное исполнение, как я понимаю буронабивные легче сделать точнее чем забивные.
Думаю исходных данных достаточно, чтобы только принципиально решить по количеству свай.
Или не связываться, и сделать по 4.. Короче не знаю, как поступить господа проектировщики
Источник
Свайный фундамент под колонну
1.1. Пособие по проектированию железобетонных ростверков свайных фундаментов под колонны зданий и сооружений составлено к СНиП 2.03.01-84 „Бетонные и железобетонные конструкции” и распространяется на проектирование монолитных ростверков квадратной и прямоугольной формы в плане, с кустами из двух, четырех и более свай, под сборные и монолитные железобетонные колонны и под стальные колонны.
Примечание. Свайные фундаменты с кустами из двух свай рекомендуется применять только в каркасных бескрановых зданиях при условии расположения свай в створе пролета здания и величине эксцентриситета приложения нагрузки в перпендикулярном направлении не превышающей 5 см.
При проектировании ростверков, предназначенных для эксплуатации в сейсмических районах, а также в агрессивных средах должны соблюдаться дополнительные требования, регламентированные соответствующими нормативными документами.
1.2. Ростверк является элементом свайного фундамента, опирающимся на куст свай ( черт. 1 .). Проектировать куст свай следует в соответствии со СНиП II -17-77 „Свайные фундаменты”.
Сопряжение ростверков со сборными железобетонными колоннами предусматривается стаканным (с подколонником или без него) с монолитными железобетонными колоннами — монолитным, со стальными колоннами — с помощью анкерных болтов.
Черт. 1. Схема образования пирамиды продавливания под сборной железобетонной колонной прямоугольного сечения
1.3. Расчет ростверков производится по предельным состояниям первой группы (по прочности) и по предельным состояниям второй группы (по раскрытию трещин).
Величины нагрузок и воздействий, значения коэффициентов надежности по нагрузке и коэффициентов сочетаний, а также подразделения нагрузок на постоянные и временные — длительные, кратковременные, особые — должны приниматься в соответствии с требованиями СНиП 2.01.07-85 «Нагрузки и воздействия» и СНиП 2.03.01-84 «Бетонные и железобетонные конструкции», а значения коэффициентов надежности по назначению — согласно „Правилам учета степени ответственности зданий и сооружений при проектировании конструкций”.
При определении нагрузок от колонн на ростверки следует учитывать увеличение моментов в месте заделки колонн от действия вертикальных нагрузок при прогибе колонн.
При расчете ростверков расчетные сопротивления бетона следует умножать на коэффициент условий работы бетона g b 2, принимаемый равным 1,1 или 0,9 в зависимости от длительности действия нагрузок. Коэффициент условий работы бетона g b 9 принимается равным 1.
1.4. Расчет ростверков на сваях сплошного круглого сечения производится так же, как и на сваях квадратного сечения. При этом в расчете ростверка сечения круглых свай условно приводятся к сваям квадратного сечения, эквивалентного круглым сваям по площади, т.е. с размером стороны сечения, равным 0,89 dsv , где dsv — диаметр свай.
А. РАСЧЕТ ПО ПРОЧНОСТИ РОСТВЕРКОВ ПОД СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ
2.1. Расчет по прочности плитной части ростверков под сборные железобетонные колонны производится: на продавливание колонной; продавливание угловой сваей; по прочности наклонных сечений на действие поперечной силы; на изгиб по нормальному и наклонному сечениям; на местное сжатие (смятие) под торцами колонн. Помимо этого проверяется прочность стакана ростверка.
Расчет ростверков на продавливание колонной
2.2. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из четырех и более свай производится по формуле (1 ) из условия, что продавливание происходит по боковой поверхности пирамиды, высота которой равна расстоянию по вертикали от рабочей арматуры плиты до низа колонны, меньшим основанием служит площадь сечения колонны, а боковые грани, проходящие от наружных граней колонны до внутренних граней свай, наклонены к горизонтали под углом не менее 45° и не более угла, соответствующего пирамиде с c =0,4 h 0 (см. черт. 1 ):
где Fper — расчетная продавливающая сила, равная сумме реакций всех свай, расположенных за пределами нижнего основания пирамиды продавливания, определяемая из условия
При этом реакции свай подсчитываются только от продольной силы N , действующей в сечении колонны у верхней горизонтальной грани ростверка;
здесь n — число свай в ростверке;
n 1 — число свай, расположенных за пределами нижнего основания пирамиды продавливания;
Rbt — расчетное сопротивление бетона растяжению для железобетонных конструкций с учетом коэффициента условий работы бетона;
h0 — рабочая высота сечения ростверка на проверяемом участке, равная расстоянию от рабочей арматуры плиты до низа колонны, условно расположенного на 5 см выше дна стакана;
и i — полусумма оснований i -й боковой грани фигуры продавливания с числом граней m ;
с i — расстояние от грани колонны до боковой грани сваи, расположенной за пределами фигуры продавливания;
a — коэффициент, учитывающий частичную передачу продольной силы на плитную часть через стенки стакана, определяемый по формуле
здесь Af — площадь боковой поверхности колонны, заделанной в стакан фундамента, определяемая по формуле
h апс — длина заделки колонны в стакан фундамента.
При расчете на продавливание центрально-нагруженных ростверков колонной прямоугольного сечения формула (1 ) приобретает следующий вид:
c 1 — расстояние от грани колонны с размером bcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания;
c 2 — расстояние от грани колонны с размером hcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания.
Отношение принимается не менее 1 и не более 2,5.
При расчете на продавливание колонной квадратного сечения центрально нагруженных ростверков при c 1=с2=с формула (4 ) будет иметь следующий вид:
При установке в пределах пирамиды продавливания поперечной арматуры расчет должен производиться из условия
но не более 2 Fb . Сила Fb принимается равной правой части условия (1 ).
Сила Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани пирамиды продавливания, по формуле
где Rsw — расчетное сопротивление поперечной арматуры растяжению при расчете наклонных сечений на действие поперечной силы;
Asw — суммарная площадь сечения поперечной арматуры, пересекающей боковые грани пирамиды продавливания.
В этом случае реакции свай подсчитываются от продольной силы и момента, действующих в сечении колонны у верхней горизонтальной грани ростверка.
При моментах, действующих в поперечном и продольном направлениях, величина , определяется в каждом направлении отдельно; в расчет принимается большая из этих величин.
Примечание. При стаканном сопряжении колонны с ростверком и эксцентриситете продольной силы в колонне величину , допускается определять, принимая величину момента, передающегося на ростверк от колонны, равной Если при этом дно стакана располагается выше плитной части ростверка, должна быть дополнительно выполнена проверка ростверка на продавливание при полном моменте и соответствующей ему сумме реакций свай из условия, что меньшим основанием пирамиды продавливания служит площадь подколонника.
2.4. При сборных железобетонных двухветвевых колоннах, имеющих общий стакан, расчет ростверка на продавливание выполняется как при колонне со сплошным прямоугольным сечением, соответствующим внешним габаритам двухветвевой колонны ( черт. 2 ).
Черт. 2. Схема образования пирамиды продавливания под сборной железобетонной двухветвевой колонной
2.5. При многорядном расположении свай ( черт. 3 ) помимо расчета на продавливание колонной по пирамиде продавливания, боковые стороны которой проходят от наружной грани колонны до ближайших граней свай, должна быть проведена проверка на продавливание ростверка колонной в предположении, что продавливание происходит по поверхности пирамиды, две или все четыре боковые стороны которой наклонены под углом 45°; при этом реакции свай, находящихся в пределах площади нижнего основания пирамиды продавливания, не учитываются.
Черт. 3. Схема образования пирамид продавливания под сборной железобетонной колонной при многорядном расположении свай за наружными гранями колонны
2.6. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из двух свай ( черт. 4 ) производится из условия
где Fper — расчетная продавливающая сила, равная сумме реакций обеих свай от продольной силы N , действующей в колонне;
с2 — расстояние от плоскости грани колонны с размером hcol до наружной грани плитной части ростверка.
Черт. 4. Схема образования пирамиды продавливания под сборной железобетонной колонной в двухсвайном фундаменте
2.7. Расчет на продавливание колонной внецентренно нагруженных ростверков свайных фундаментов с кустами из двух свай также производится по формуле (8 ), но при этом расчетная величина продавливающей силы принимается равной Fper =2 Fi , где Fi — реакция наиболее нагруженной сваи от продольной силы N и момента М, действующих в колонне.
2.8. При стаканном сопряжении колонны с ростверком, когда стенки стакана подколонника имеют большую толщину ( ds ³ 0,75 hp ), или в плитных ростверках ( черт. 5 ) при заглублении колонны в плитную часть ростверка не менее чем на 1/3 ее высоты, помимо расчета ростверка на продавливание в соответствии с пп. 2.2 — 2.7 следует производить расчет ростверка на раскалывание колонной от силы N по формуле
где N — продольная сила, действующая в сечении колонны у верхней горизонтальной грани ростверка;
m — коэффициент, вычисляемый по формуле
здесь s sid — напряжение бокового обжатия, МПа, определяемое по формуле
здесь Ab — наименьшая площадь вертикального сечения ростверка по оси колонны за вычетом вертикальной площади сечения стакана и площади трапеции, расположенной под колонной, с наклоненными под углом 45° сторонами (на черт. 5 площадь трапеции показана пунктирными линиями);
Rbt , a — обозначения те же, что в формуле (1 );
а — условное обозначение вводимой в расчет стороны сечения колонны ( bcol или hcol );
Допускается принимать m =0,75.
Найденная по формуле (9 ) несущая способность ростверка по раскалыванию сравнивается с его несущей способностью на продавливание ( ) и принимается большая из этих величин.
Черт. 5. Схема свайного фундамента с плитным ростверком
При этом несущая способность ростверка, определенная по формуле (9 ), должна приниматься не более его несущей способности на продавливание колонной от верха ростверка от продольной силы и момента, действующих в этом сечении. Расчет на продавливание от верха ростверка производится по пп. 2.2 — 2.7 с введением в правую часть формул (1 ); (4) ; (5); (8) коэффициента 0,75 и принимая h 0 равным расстоянию от рабочей арматуры плиты до верхней горизонтальной грани ростверка.
Расчет ростверков на продавливание угловой сваей
где Fai — расчетная нагрузка на угловую сваю с учетом моментов в двух направлениях, включая влияние местной нагрузки (например, от стенового заполнения);
h 01 — рабочая высота сечения на проверяемом участке, равная расстоянию от верха свай до верхней горизонтальной грани плиты ростверка или его нижней ступени.
и i — полусумма оснований i -й боковой грани фигуры продавливания высотой h 01, образующейся при продавливании плиты-ростверка угловой сваей;
b i — коэффициент, определяемый по формуле
здесь k — коэффициент, учитывающий снижение несущей способности плиты ростверка в угловой зоне.
В преобразованном виде формула (12 ) будет иметь вид
b 01; b 02 — расстояния от внутренних граней угловых свай до наружных граней плиты ростверка ( черт. 6 );
c 01; c 02 — расстояния от внутренних граней угловых свай до ближайших граней подколонника ростверка или до ближайших граней ступени при ступенчатом ростверке;
b 1 и b 2 — значения этих коэффициентов принимаются по табл. 1 .
Черт. 6. Схема продавливания ростверка угловой сваей
Статья расскажет о видах фундаментов, используемых под колонны каркасных зданий, а также об устройстве свайного фундамента под колонну.
Содержание статьи:
При строительстве каркасных гражданских и промышленных зданий и сооружений в качестве основных несущих элементов часто выступают колонны. На возведенный каркас позже монтируются все остальные конструкции, поэтому опоры:
- должны выдерживать не только собственный вес, но и нагрузки от остальных частей постройки;
- должны быть установлены с минимальными отклонениями, что возможно только в случае грамотного устройства их фундаментов.
Эти задачи решают разные типы фундаментных конструкций:
Монолитные и сборные выполняются из армированного железобетона. Свайные – с использованием как бетонных, так и стальных винтовых свай.
Монолитные фундаменты универсальны, так как на них можно установить и железобетонные, и металлические опоры. Сборные больше подходят для установки железобетонных элементов.
Фундаменты из винтовых свай, благодаря возможности устройства для них как металлических, так и монолитных железобетонных ростверков, также позволяют устанавливать любые элементы.
В зависимости от типа опоры выбирается и вид соединения:
- для железобетонных элементов – установка основания колонны в специальное углубление с последующей заливкой бетоном для фиксации;
- для металлических элементов – болтовое/сварное крепление.
1. Расчет фундамента колонны
Чтобы корректно рассчитать свайное основание для подобных несущих элементов, необходимо обладать данными:
- о физико-механические свойствах грунта, которые могут быть получены в ходе выполнения динамического зондирования грунтов (методика, разработанная специалистами ГК «ГлавФундамент» на основании ГОСТ 19912 «Грунты. Методы полевых испытаний сваями статическим и динамическим зондированием», подробнее «Геотехнические и геолого-литологические исследования и измерения коррозионной агрессивности грунтов»);
- о нагрузках.
Компания «ГлавФундамент» неоднократно участвовала в строительстве объектов, требовавших устройства свайных фундаментов под колонны.
2. Строительство производственно-складского корпуса на территории фабрики «Керама Марацци»
При проектировании нового производственно-складского корпуса (одноэтажного здания для производства и хранения продукции площадью более восьми тысяч квадратных метров) на территории фабрики «Керама Марации» возникла необходимость в научно-техническом сопровождении специалистами «ГлавФундамент».
Это связано с тем, что по данным инженерно-геологических изысканий участок строительства имеет сложные грунтовые условия, обусловленные напластованием разных грунтов – насыпных, глинистых (от мягкопластичной до полутвердой консистенции) и мелких песчаных (различной плотности). Более того, данные грунты имеют большой перепад как по мощности слоев, так и по распространению в плане площадки.
Таким образом, перед отделом НИОКР стояла задача по выбору оптимальной конструкции винтовых свай под каждую зону с относительно однородными грунтовыми условиями.
В результате под объекты были рекомендованы винтовые сваи с диаметром ствола 325 мм, которые различались по:
- количеству лопастей;
- конфигурации лопастей;
- расстоянию между лопастями;
- шагу, углу наклона и диаметру лопастей;
- длине (от трех до семи метров).
Для включения в совместную работу винтовой сваи и максимального объема околосвайного грунта сваи моделировались с различным расстоянием между лопастями (подробнее «Особенности расчета многолопастных винтовых свай»). Помимо межлопастного расстояния, на включение в работу грунта влияют и такие расчетные величины, как шаг, угол наклона и конфигурация лопастей (подробнее «Ключевые принципы подбора параметров лопастей»), которые позволяют установить сваю с минимальным нарушением структуры грунта.
Выбор толщины металлопроката обусловлен коррозионной агрессивностью грунтов площадки строительства. Для уточнения правильности подбора данного параметра после выполнения расчета срока службы свай в грунте выполняется проверка соответствия остаточной толщины стенки ствола проектным нагрузкам и требованиям нормативной документации (подробнее «Расчет толщины стенки ствола»).
Расчет долговечности выполняется без учета покрытия. Это связано с тем, что в процессе погружения винтовая свая испытывает значительное абразивное воздействие, что не позволяет гарантировать целостность любого покрытия (подробнее «Сравнительный анализ различных типов антикоррозийного покрытия»).
Для подтверждения принятого проектного решения специалистами компании были проведены полевые испытания грунтов статическими вдавливающими нагрузками, которые подтвердили требуемую несущую способность свай.
В настоящее время проект успешно реализован.
Сооружение свайного фундамента завершается устройством ростверка — конструкции, связывающей между собой головы свай.
По существующим правилам, головы свай должны быть прочно связаны с ростверком. С этой целью у железобетонных свай обнажают выпуски арматуры не менее чем на 25 см при работе свай на вертикальную нагрузку и на 40 см при работе свай на горизонтальную нагрузку. Головы свай заделывают в бетон ростверка соответственно не менее чем на 5 и 10 см.
Если железобетонный ростверк устраивают по деревянным сваям, то головы свай заделывают не менее чем на 30 см. В опорах мостов головы свай заделывают в ростверк не менее чем на удвоенную толщину ствола сваи.
Свес железобетонного ростверка, т. е. расстояние от края его до грани сваи должен быть не менее 5 см. Следует учитывать, что при погружении свай допускаются отклонения от проекта. Так, для однорядных свайных фундаментов отклонения свай в плане от заданной оси могут оставлять 0,2 диаметра сваи, для кустов и лент с двух- и трехрядным расположением свай — 0,3 диаметра сваи и для свайных полей — 0,4 диаметра сваи.
Поскольку возможны такие отклонения свай от проектной оси, дополнительное требование состоит в том, чтобы свес ростверка составлял не менее 0,15 диаметра сваи и не менее 5 см. В фундаментах мостовых опор свес ростверка должен составлять не менее 25 см. Свес ростверка не следует делать более 0,5 диаметра сваи, так как в противном случае ухудшаются условия передачи нагрузки от сооружения на сваи.
Выпуски арматуры свай следует приваривать к арматуре ростверка или же заделывать в бетон сжатой зоны ростверка.
Изложенные правила относятся к устройству монолитного железобетонного ростверка. Однако в ряде случаев устройство монолитных ростверков нежелательно. С учетом этого разработаны конструкции сборных ростверков. В случае применения их требуется с большей -тщательностью вести забивку свай с меньшими допусками отклонения свай от проектной оси. Головы свай монолитно скрепляют со сборными ростверками сваркой закладных деталей и заливкой цементным раствором.
Вследствие ряда недостатков в устройстве сборных ростверков были разработаны конструкции сборно-монолитных ростверков, в которых основная часть сборная, а непосредственный контакт ростверка со сваей осуществляется монолитной частью.
Наконец, экспериментально было проверено, что в жилых зданиях горизонтальные нагрузки на головы свай настолько малы, что можно обойтись без замоноличивания ростверка. В таких случаях головы свай тщательно срезывают под один уровень, на них помещают слой цементного раствора, по которому укладывают балки или плиты ростверка.
В каркасных конструкциях нередки случаи, когда вся нагрузка от колонны может быть воспринята одной сваей, особенно если учесть, что несущая способность свай-оболочек может превосходить 1000 т. В таких случаях необходимость в ростверке отпадает, и переходят к конструкции свай-колонн. Сопрягают колонны с полнотелыми сваями при помощи специальных сборных муфт, с пустотелой сваей — при помощи специального стакана в полости сваи.
Таким образом, в зависимости от условий применяют конструкции монолитных ростверков, сборных, сборно-монолитных, устройство фундаментов с обвязочными балками, заменяющими ростверки, и устройство свай-колонн.
Для того чтобы не было проблем с прокладкой инженерных коммуникаций необходимо заранее в фундаменте и стенах предусмотреть отверстия для прокладки водопровода и канализации. Все эти моменты должны быть предусмотрены в проекте. Однако часто возникают вопросы которые не совсем ясны для конкретного строительства. Их можно легко решить путем консультаций со специалистами, зайдя на сайт https://www.santekhnik.su/ где можно получить подробную консультацию или вызвать специалиста на объект.
Решение вопроса о выборе типа сопряжения свай с несущими конструкциями здания или сооружения зависит от конструктивной схемы самого сооружения, наличия и величины горизонтальных нагрузок, передаваемых на головы свай, соотношения между вертикальными и горизонтальными нагрузками.
Конструкции монолитных ростверков под отдельные колонны зданий и сооружений показаны на рис. 1.15. Особенностью таких ростверков является устройство стакана для
Рис. 1.15. Конструкции свайных фундаментов под отдельные колонны зданий
и сооружений
одно- и двухветвевых сборных колонн.
На рис.1.16 показан разрез жилого здания на свайных фундаментах. Под наружные
Рис. 1.16. Устройство свайных фундаментов со сборно-монолитными
ростверками для жилого здания с несущими продольными стенами и
внутренними колоннами:
1 — сваи; 2 — монолитная часть ростверка; 3 — панель перекрытия; 4 — продольная балка; 5 — колонна; 6 — поперечная балка
несущие стены сваи забиты в один ряд и связаны монолитным ростверком. Внутренние колонны опираются на кусты из девяти свай, связанных ростверком. По монолитным ростверкам уложены поперечные и продольные балки. Такая конструкция ростверка позволяет легко монтировать на них стены, колонны и перекрытия здания.
Устройство ростверков в бескаркасных зданиях показано на рис. 1.17. Монолитный
Рис. 1.17. Свайные фундаменты бескаркасных зданий:
а — план фундаментов; б — поперечный разрез свайного фундамента с армокирпичным ростверком: 1 — свая; 2 — оголовник; 3 — шлаковая подсыпка; 4 — гидроизоляция; 5 — кирпичная кладка; в — поперечный разрез свайного фундамента с монолитным бетонным ростверком: 1 — свая; 2 — монолитный ростверк; 3 — шлаковая подсыпка; 4 — гидроизоляция; 5 — кирпичная кладка
ростверк возможен в двух вариантах: бетонном и армокирпичном. На рисунке видны места заделки свай в ростверк.
На рис. 1.18 изображено устройство монолитного ростверка на сваях, работающих на
Рис. 1.18. Свайный фундамент под вертикальный аппарат:
1 — сваи; 2 — шлаковая подсыпка; 3 — арматурный каркас; 4 — анкерные болты; 5-монолитный ростверк
сжатие и выдергивание. Анкерные болты заделаны в полости пустотелой сваи, после чего замоноличен ростверк.
Типичное устройство сборных ростверков для жилых домов серий 1-464-А и 1-464-Я представлено на рис. 1.19. На сваи после их забивки и срезки под уровень надеты специальные сборные оголовники, по которым на растворе уложены балки ростверка.
Рис. 1.19. Свайные фундаменты из призматических свай со сборными неразрезными ростверками для домов серий 1-464-А и 1-464-Я: а — поперечный разрез; б — общий вид
В тех случаях, когда отсутствуют горизонтальные нагрузки, сборный ростверк может быть еще менее жестко связан со сваями. При этом сваи срезают под уровень и на их головы укладывают по раствору балки ростверка (рис. 1.20).
Рис. 1.20. Свайный фундамент со сборным ростверком, уложенным по головам свай на растворе. Общий вид ростверка
Под здания с небольшими нагрузками или в случае применения свай-оболочек с большой несущей способностью целесообразно устройство свай-колонн. Свая и установленная соосно с ней колонна составляют единую безростверковую конструкцию (рис. 1.21). Колонны сопрягают со сваями различными конструктивными приемами.
Рис. 1.21. Общий вид здания со сваями-колоннами
Более целесообразно использовать трубчатые сваи, в голове которых устраивают специальный стакан для колонны (рис. 1.22 и 1.23),
Рис. 1.22. Разрез свайного фундамента из трубчатых свай большого диаметра
под здание серии 1-467-А
Рис. 1.23. Заделка колонны в трубчатую сваю со стаканом: а — трубчатая свая со стаканом; б -деталь заделки колонны в трубчатую сваю; 1- стеновая панель; 2 — колонна; 3 — гидроизоляция; 4 — железобетонный стакан; 5 — железобетонная свая; 6 — песчаная засыпка; 7 — грунтовая пробка
Для изготовления трубчатых свай со стаканом применяют бетон марки 300 и продольную арматуру Ст. 5 по ГОСТ 5781-58 и спиральную из Ст. 3 по ГОСТ 2590-57.
Расход арматуры на 1 м 3 бетона составляет 54,8 кг, в том числе продольной 44,6 кг, поперечной 10,2 кг. В случае установки сваи непосредственно под колонной поперечную арматуру оголовка ставят по дополнительному расчету.
Пустотелые сваи, иногда применяемые в жилищном строительстве (рис. 1.24), более
Рис. 1.24. Разрез свайного фундамента жилого дома из свай-оболочек
d=800 мм
удобны для устройства различных сборных оголовков. На рис. 1.25 показано устройство оголовка, позволяющее в отдельных случаях обходиться без земляных работ
Рис. 1.25. Устройство бетонного оголовка на погруженной трубчатой свае
по рытью котлована.
На рис. 1.26 показаны варианты сопряжений колонн со сваями как пустотелыми, так и
Рис. 1.26. Различные виды сопряжений колонн со сваями в безростверковых конструкциях:
а, б и г — сваи квадратные; в и д — сваи трубчатые; 1 — свая; 2 — насадка; 3 — колонна; 4 — заделка бетоном; 5 — засыпка песком; 6 — грунтовая пробка; 7 — пробка из бетона
сплошными. В последнем случае сопряжение осуществляют с помощью железобетонных сборных муфт. Как это видно, такие сопряжения возможны при различных соотношениях между размерами сечения и колонны.
На практике применяется много других вариантов устройства ростверков, отличающихся от приведенных выше конструкций только деталями.
Грунтовые условия строительной площадки:
Грунт №1: растительный слой, насыпь, ɣ=1,8 т/м3, h1=0,8м;
Грунт №2: супесь пластичная, IL=0,2, h2=3м;
Грунт №3: супесь текучая, IL=1,1, h3=4м;
Грунт №4: песок мелкий средней плотности, h4=5м;
Грунт №5: глина твердая, IL= -0,02, h5=6м.
Глубину заложения ростверка примем равной d=1,5м; высота ростверка hp=1,0м. длину сваи от подошвы ростверка до острия примем равной 9м; в соответствии со стандартами примем размеры сечения сваи 0,4х0,4м.
Определим несущую способность сваи:
ɣс=1; ɣCR=1; ɣCF=1 – коэффициенты условий работы грунта;
R=10,5МПа=1050т/м2 – расчетное сопротивление грунта под нижним концом сваи;
А=0,4х0,4=0,16м2 – площадь опирания на грунт сваи;
u=4х0,4=1,6м – нагруженный периметр поперечного сечения сваи;
fi – расчетное сопротивление i-го слоя грунта на боковой поверхности сваи;
hi – толщина i-го слоя грунта, соприкасающегося с поверхностью;
Общая нагрузка, которая может передаваться на сваи:
N – расчетная нагрузка;
ɣк=1,4 – коэффициент надежности;
Ориентировочное число свай:
Расчетная нагрузка на сваю N для фундаментов с вертикальными сваями определяется по формуле:
Проверка расчета по первому предельному состоянию заключается в выполнении неравенства:
Расчет свайного фундамента на деформации:
Свайный фундамент рассматривается как сплошной массив, длина и ширина которого равны:
Lм и Вм – ширина и длина условного фундамента соответственно;
L и В – расстояние между наружными кромками крайних рядов свай;
Lсв – расстояние от подошвы ростверка до нижних концов свай
— средневзвешенное нормативное значение кгла внутреннего трения.
Проверка свайного фундамента:
38,03т 0 – условие выполнено
- АлтГТУ 419
- АлтГУ 113
- АмПГУ 296
- АГТУ 267
- БИТТУ 794
- БГТУ «Военмех» 1191
- БГМУ 172
- БГТУ 603
- БГУ 155
- БГУИР 391
- БелГУТ 4908
- БГЭУ 963
- БНТУ 1070
- БТЭУ ПК 689
- БрГУ 179
- ВНТУ 120
- ВГУЭС 426
- ВлГУ 645
- ВМедА 611
- ВолгГТУ 235
- ВНУ им. Даля 166
- ВЗФЭИ 245
- ВятГСХА 101
- ВятГГУ 139
- ВятГУ 559
- ГГДСК 171
- ГомГМК 501
- ГГМУ 1966
- ГГТУ им. Сухого 4467
- ГГУ им. Скорины 1590
- ГМА им. Макарова 299
- ДГПУ 159
- ДальГАУ 279
- ДВГГУ 134
- ДВГМУ 408
- ДВГТУ 936
- ДВГУПС 305
- ДВФУ 949
- ДонГТУ 498
- ДИТМ МНТУ 109
- ИвГМА 488
- ИГХТУ 131
- ИжГТУ 145
- КемГППК 171
- КемГУ 508
- КГМТУ 270
- КировАТ 147
- КГКСЭП 407
- КГТА им. Дегтярева 174
- КнАГТУ 2910
- КрасГАУ 345
- КрасГМУ 629
- КГПУ им. Астафьева 133
- КГТУ (СФУ) 567
- КГТЭИ (СФУ) 112
- КПК №2 177
- КубГТУ 138
- КубГУ 109
- КузГПА 182
- КузГТУ 789
- МГТУ им. Носова 369
- МГЭУ им. Сахарова 232
- МГЭК 249
- МГПУ 165
- МАИ 144
- МАДИ 151
- МГИУ 1179
- МГОУ 121
- МГСУ 331
- МГУ 273
- МГУКИ 101
- МГУПИ 225
- МГУПС (МИИТ) 637
- МГУТУ 122
- МТУСИ 179
- ХАИ 656
- ТПУ 455
- НИУ МЭИ 640
- НМСУ «Горный» 1701
- ХПИ 1534
- НТУУ «КПИ» 213
- НУК им. Макарова 543
- НВ 1001
- НГАВТ 362
- НГАУ 411
- НГАСУ 817
- НГМУ 665
- НГПУ 214
- НГТУ 4610
- НГУ 1993
- НГУЭУ 499
- НИИ 201
- ОмГТУ 302
- ОмГУПС 230
- СПбПК №4 115
- ПГУПС 2489
- ПГПУ им. Короленко 296
- ПНТУ им. Кондратюка 120
- РАНХиГС 190
- РОАТ МИИТ 608
- РТА 245
- РГГМУ 117
- РГПУ им. Герцена 123
- РГППУ 142
- РГСУ 162
- «МАТИ» — РГТУ 121
- РГУНиГ 260
- РЭУ им. Плеханова 123
- РГАТУ им. Соловьёва 219
- РязГМУ 125
- РГРТУ 666
- СамГТУ 131
- СПбГАСУ 315
- ИНЖЭКОН 328
- СПбГИПСР 136
- СПбГЛТУ им. Кирова 227
- СПбГМТУ 143
- СПбГПМУ 146
- СПбГПУ 1599
- СПбГТИ (ТУ) 293
- СПбГТУРП 236
- СПбГУ 578
- ГУАП 524
- СПбГУНиПТ 291
- СПбГУПТД 438
- СПбГУСЭ 226
- СПбГУТ 194
- СПГУТД 151
- СПбГУЭФ 145
- СПбГЭТУ «ЛЭТИ» 379
- ПИМаш 247
- НИУ ИТМО 531
- СГТУ им. Гагарина 114
- СахГУ 278
- СЗТУ 484
- СибАГС 249
- СибГАУ 462
- СибГИУ 1654
- СибГТУ 946
- СГУПС 1473
- СибГУТИ 2083
- СибУПК 377
- СФУ 2424
- СНАУ 567
- СумГУ 768
- ТРТУ 149
- ТОГУ 551
- ТГЭУ 325
- ТГУ (Томск) 276
- ТГПУ 181
- ТулГУ 553
- УкрГАЖТ 234
- УлГТУ 536
- УИПКПРО 123
- УрГПУ 195
- УГТУ-УПИ 758
- УГНТУ 570
- УГТУ 134
- ХГАЭП 138
- ХГАФК 110
- ХНАГХ 407
- ХНУВД 512
- ХНУ им. Каразина 305
- ХНУРЭ 325
- ХНЭУ 495
- ЦПУ 157
- ЧитГУ 220
- ЮУрГУ 309
Полный список ВУЗов
- О проекте
- Реклама на сайте
- Правообладателям
- Правила
- Обратная связь
Чтобы распечатать файл, скачайте его (в формате Word).
Сваей-колонной является забивная свая с ненапрягаемой арматурой квадратного или полого круглого сечения, надземная часть которой служит колонной здания и сооружения. Свая-колонна отличается от соответствующей тестированной сваи наличием закладных деталей и повышенным в случае необходимости продольным армированием.
Свая-колонна, работающая на косое внецентренное сжатие, должна армироваться восемью продольными стержнями.
Для легких сельскохозяйственных зданий ЦНИИЭПСельстроем разработаны сваи-колонны с консолями.
Сваи-колонны рекомендуется применять в песках средней плотности и глинистых грунтах тугопластичной и полутвердой консистенции, а также при прорезании рыхлых песчаных и мягкопластичных глинистых грунтов для бескрановых каркасных зданий с нагрузкой на колонну до 500 кН, опор сооружений с нагрузкой до 1000 кН, технологических трубопроводов с нагрузкой до 20 кН/м.
8.1.4. Буронабивные сваи
Буронабивные сваи изготовляются в грунте. В пробуренную скважину устанавливается арматурный каркас и укладывается бетонная смесь. После достижения бетоном проектной прочности свая может воспринимать проектные нагрузки (осевые, вдавливающие, выдергивающие, горизонтальные).
В зависимости от грунтовых условий и имеющегося бурового оборудования, определяющих технологию изготовления, буронабивные сваи подразделяются на несколько типов: БСС, изготовляемых в устойчивых глинистых грунтах (сухих); БСВГ — в неустойчивых глинистых грунтах (водонасыщенных) с закреплением стенок скважин глинистым раствором; БСВО — в неустойчивых грунтах (водонасыщенных) с закреплением стенок скважин трубами, оставляемыми в грунте; БСИ — в неустойчивых грунтах (водонасыщенных) с закреплением стенок скважин извлекаемыми трубами; БССМ — в устойчивых глинистых грунтах (сухих) для малонагруженных зданий и сооружений.
Типоразмеры буронабивных свай и наиболее распространенные марки бурового оборудования приведены в табл. 8.4. Вид и номенклатуру буронабивных свай принимают в зависимости от их экономической эффективности, грунтовых условий, вида и величины действующих нагрузок, а также способа производства работ.
ТАБЛИЦА 8.4. НОМЕНКЛАТУРА И ТИПОРАЗМЕРЫ БУРОНАБИВНЫХ СВАЙ
Тип сваи | Способ изготовления сваи | Диаметр сваи 1 , мм | Класс бетона | Длина сваи, м | Оборудование |
БСС | Вращательным бурением в устойчивых глинистых грунтах без закрепления стенок скважин | 500/1200 500/1400 500/1600 600/1600 | В15—В20 | 10—30 | Станки СО-2 |
800/1800 1000 1200 | В15—В20 В15 В15 | Станки СО-1200 | |||
БСВГ | Вращательным бурением в неустойчивых грунтах с закреплением стенок скважин глинистым раствором | 600/1600 | В15—В20 | 10—20 | Станки УРБ-ЗАМ |
БСВО | Вращательным и ударно-канатным бурениемв неустойчивых грунтах с закреплениемстенок скважин трубами,оставляемыми в грунте | 600/1600 800/1800 | В15—В20 | 10—30 | Станки УРБ-ЗАМ, УКС |
БСИ | То же, с извлечением инвентарных обсадных труб | 880 980 1080 1180 | В15 | 10—50 | Установка СП-45 и станки зарубежных фирм |
БССМ | Вращательным бурением в сухих устойчивых глинистых грунтах без закрепления стенок скважины | 400 500 | В15 | 2—4 | Ямобуры |
1 Перед чертой указан диаметр ствола, за чертой — диаметр уширения.
Буронабивные сваи следует применять во всех случаях, когда имеются технико-экономические преимущества перед другими видами фундаментов.
В зависимости от грунтовых условий принимаются сваи:
- – при необходимости прорезания грунтов мощностью более 20 м — БСС и БСВО длиной 20-30 м, БСИ длиной 20-50 м;
- – при перепаде кровли несущего слоя грунта — все виды свай;
- – при опирании свай на глинистые грунты твердой, полутвердой и тугопластичной консистенции, на скальные, полускальные и песчаные грунты и прорезании: слоя насыпи с твердыми включениями — БСВО, длиной до 30 м и БСИ длиной 20—50 м; слоя присадочных грунтов толщиной более 10 м — БСС длиной 12—30 м; стоя глинистых грунтов от мягкопластичной до текучей консистенции толщиной более 10 м — БСВГ длиной 15—20 м, БСВО длиной 15—30 м и БСИ длиной 20—50 м; слоя набухающих грунтов — БСС длиной 10—30 м и БССМ — длиной 3—6 м с уширенной пятой.
В зависимости от действующих условий принимаются следующие сваи:
- – БСС, БСВО, БСИ при действии на сваю больших (более 100 кН) горизонтальных нагрузок, в том числе сейсмических;
- – БСС диаметрами 500 и 1200 мм, БСВО диаметрами 600 и 800 мм;
- – БСИ диаметрами 880, 980, 1080 и 1180 мм при строительстве на оползневых склонах;
- – БСИ длиной до 20 м для фундаментов оборудования;
- – БССМ для малонагруженных конструкций.
В зависимости от условий производства работ буронабивные сваи применяются:
- – при отсутствии забивных свай и оборудования для их погружения;
- – в стесненных условиях строительной площадки, на которой невозможна забивка свай;
- – при производстве работ вблизи существующих зданий и сооружений, на которые недопустимы динамические воздействия, возникающие при забивке свай;
- – при необходимости усиления фундаментов существующих зданий.
В зависимости от инженерно-геологических условий, особенностей проектируемого здания или сооружения и внешних нагрузок, передаваемых на фундаменты, буронабивные сваи армируются на полную длину, на часть длины или только в верхней части для связи с ростверком (табл. 8.5).
Арматурные каркасы для буронабивных свай изготовляются, как правило, звеньями длиной 6—12 м. Конструкция арматурного каркаса буронабивной сваи приведена на рис. 8.4. Стык звеньев арматурных каркасов осуществляется с помощью сварки продольных стержней нижнего каркаса с кольцом жесткости, расположенным в нижней части верхнего звена.
ТАБЛИЦА 8.5. ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ВИД АРМИРОВАНИЯ БУРОНАБИВНЫХ СВАЙ
Вид армирования | Эскиз | Грунтовые условия | Особые условия площадки | Нагрузки на сваю | |||||||
выдергивающие | сжимающие | горизонтальные | сейсмические | ||||||||
На всю глубину | Слабые водонасыщенные грунты по всей глубине свай | Наличие по глубине сваи карстовых пустот или подземных выработок | Предопреде- ляющие армирование на всю длину | Напряжения в бетоне превышают величины, указанные в СНиП II-21-75 с учетом изменений СНиП II-17-77 | При растягивающих напряжениях в бетоне σt ≥ 0,4 МПа | В районах с сейсмичностью более 6 баллов (кроме свай БСВ) | |||||
Верхней части сваи | То же, в верхней части свая на глубину h | Наличие в верхней части сваи карстовых пустот, подземных выработок, каналов, подземных помещений и т.д. на глубине h | Воспринимаемые армированной частью свай | Напряжения в бетоне не превышают величин, указанных в СНиП II-21-75 с учетом изменений СНиП II-17-77 | То же, σt IL ≤ 0,4 | Отсутствуют | Отсутствуют | То же | То же | То же |
Примечания: 1. При наличии по длине сваи карстовых пустот или подземных выработок обсадные трубы оставляются в обязательном порядке.
2. На эскизах: 1 — выпуски арматуры; 2 — арматурные каркасы; 3 — отдельные арматурные стержни; d — диаметр арматуры.
Предельная длина каркаса устанавливается с учетом принятой технологии изготовления и наличия соответствующего кранового и транспортного оборудования.
По имеющемуся опыту предельная длина арматурного каркаса для свай диаметром 500—600 мм составляет 14 м, диаметром 1000—1200 мм — 10 м. Рекомендуемое число продольной арматуры и ее диаметры приведены в табл. 8.6.
Для буронабивных свай применяют, как правило, литую бетонную смесь на мелком заполнителе из бетона класса В10, В15 (наиболее распространенная) и В20.
Геометрические характеристики и объемы буронабивных свай приведены в табл. 8.7, 8.8.
Литая бетонная смесь укладывается в скважину методом вертикально перемещающейся трубы (ВПТ) при непрерывной подаче ее до полного заполнения скважины. В маловлажных устойчивых глинистых грунтах допускается свободный сброс бетонной смеси в скважину через приемный бункер с направляющим патрубком длиной примерно 2 м, если не происходит обрушения грунта со стенок скважины и зависания бетонной смеси на арматурном каркасе. Возможность применения свободного сброса должна проверяться в начальный период производства работ в присутствии авторов проекта.
При изготовлении свай типа БСИ необходимо, чтобы срок начала схватывания бетонной смеси был не менее 3 ч. Для сохранения требуемой пластичности и подвижности бетонной смеси следует использовать пластифицирующие и гидрофобные добавки.
ТАБЛИЦА 8.6. МАТЕРИАЛЫ И ХАРАКТЕРИСТИКИ ПРОДОЛЬНОЙ АРМАТУРЫ ДЛЯ БУРОНАБИВНЫХ СВАЙ
Тип свай | Диаметр свай, см | Класс бетона | Класс продольной арматуры | Диаметр арматуры, мм | Число продольных стержней, шт. |
БССМ | 40 | В10 | A-I; A-II | 12; 14 | 6 |
БСС БССМ | 50 | В10 В15 | А-I; А-III A-I; А-II | 12; 14 | 6 |
БСС БСВГ БСВО | 60 | В10 В15 В20 | А-II; А-III | 14; 16; 18 | 6; 8; 10 |
БСС БСВО | 80 | В15 В20 | 16; 18; 20 | 8; 10 | |
БСИ | 88 98 | В15 | 16; 18; 20 | 8; 10; 12 10; 12 | |
БСС | 100 | В15 В20 | 16; 18; 20 | 10; 12; 14 | |
БСИ | 108 118 | В15 | 16; 18; 20; 22 16; 18; 20; 22; 25 | 12; 14; 16 | |
БСС | 120 | В15 В20 | 16; 18; 20; 22; 25 | 12; 14; 16 |
ТАБЛИЦА 8.7. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ БУРОНАБИВНЫХ СВАЙ
Тип сваи | Диаметр, мм | Площадь сечения, м 2 | Высота уширения, м | Объем уширения, м 3 | ||
ствола | уширения | ствола | уширения | |||
БСС | 500 | 1200 1400 1600 | 0,196 | 1,130 1,540 2,015 | 0,67 | 0,439 0,565 0,708 |
600 800 1000 1200 | 1600 1800 – – | 0,283 0,503 0,785 1,130 | 2,015 2,545 – – | 0,82 1,09 – – | 0,903 1,600 – – | |
БСВГ | 600 | 1600 | 0,283 | 2,015 | 0,60 | 0,679 |
БСВО | 600 800 | 1600 1800 | 0,283 0,503 | 2,015 2,545 | 0,60 0,80 | 0,679 1,196 |
БСИ | 880 980 1080 1180 | – | 0,608 0,755 0,916 1,093 | – | – | – |
БССМ | 400 500 | – | 0,126 0,196 | – | – | – |
ТАБЛИЦА 8.8. ГЕОМЕТРИЧЕСКИЙ ОБЪЕМ БЕТОНА БУРОНАБИВНЫХ СВАИ
Тип сваи | Диаметр сваи 1 , мм | Объем бетона, м 3 , при длине свай, м | ||||||||||
10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | ||
БСС | 500 | 1,96 | 2,36 | 2,75 | 3,14 | 3,53 | 3,93 | – | – | – | – | – |
600 | 2,83 | 3,39 | 3,96 | 4,52 | 5,09 | 5,55 | – | – | – | – | – | |
500/1200 | 2,39 | 2,79 | 3,17 | 3,57 | 3,96 | 4,35 | 4,74 | 5,14 | 5,59 | 5,92 | 6,91 | |
500/1400 | 2,51 | 2,91 | 3,30 | 3,69 | 4,08 | 4,48 | 4,87 | 5,26 | 5,66 | 6,05 | 8,44 | |
500/1600 | 2,66 | 3,05 | 3,44 | 3,83 | 4,23 | 4,62 | 5,01 | 5,41 | 5,80 | 6,19 | 6,58 | |
600/1600 | 3,67 | 4,24 | 4,80 | 5,37 | 5,93 | 6,50 | 7,07 | 7,63 | 8,20 | 8,77 | 9,33 | |
800/1800 | 5,37 | 7,39 | 8,38 | 9,39 | 10,39 | 11,39 | 12,40 | 13,40 | 14,41 | 15,41 | 16,41 | |
1000 | 7,85 | 9,42 | 10,99 | 12,56 | 14,13 | 15,70 | 17,24 | 18,84 | 20,41 | 21,38 | 23,55 | |
1200 | 11,30 | 13,56 | 15,82 | 18,08 | 20,34 | 22,60 | 24,86 | 27,12 | 29,30 | 31,64 | 33,90 | |
БСВГ | 600/1600 | 3,51 | 4,08 | 6,54 | 5,21 | 5,77 | 6,34 | – | – | – | – | – |
БСВО | 600/1600 | 3,51 | 4,08 | 4,64 | 5,21 | 5,77 | 6,34 | 6,91 | 7,47 | 8,04 | 8,60 | 9,17 |
800/1800 | 6,12 | 7,12 | 8,12 | 9,12 | 10,13 | 11,14 | 12,14 | 13,14 | 14,15 | 15,15 | 16,16 | |
БСИ | 880 | – | – | – | – | – | 12,16 | 13,37 | 14,59 | 15,80 | 17,00 | 18,20 |
980 | 15,08 | 16,59 | 18,10 | 19,60 | 21,11 | 22,62 | ||||||
1080 | 18,31 | 20,14 | 21,97 | 23,81 | 25,64 | 27,47 | ||||||
1180 | 21,85 | 24,05 | 25,23 | 28,42 | 30,60 | 32,79 |
1 Перед чертой указан диаметр ствола, за чертой — диаметр уширения.
Транспортировать литую бетонную смесь для буронабивных свай следует в автобетоносмесителях большой вместимости, применение которых обеспечивает укладку смеси в скважину без перегрузочных операций. Расстояние от места приготовления бетонной смеси до места ее укладки должно быть по возможности не более 3 км.
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник