Свайный фундамент под промышленное здание

Фундаменты промышленных зданий с применением винтовых свай

Статья расскажет об особенностях фундаментов промышленных зданий, а также об опыте применения винтовых свай в качестве оснований подобных строений.

Содержание статьи:

Большинство промышленных объектов относятся к потенциально опасным. Любые разрушения конструкций подобных зданий и сооружений могут привести к авариям, следствием которых станут не только экономические потери, но и человеческие жертвы, и существенный ущерб окружающей среде.

Поэтому к постройкам промышленного назначения предъявляются серьезные требования с точки зрения:

Наиболее важным конструктивным элементом промышленных зданий, как и в случае с любыми другими строениями, является, конечно, фундамент.

1. Выбор основания для промышленного здания

Выбор определенного типа основания для промышленного здания определяется рядом факторов:

  • инженерно-геологические характеристики грунтов;
  • глубина промерзания;
  • уровень залегания грунтовых вод;
  • нагрузки и воздействия;
  • климатические условия (преобладающие ветра, количество и вид осадков);
  • характер деятельности предприятия;
  • близость автострад, железнодорожных путей, аэропортов, метро и т.д.

При строительстве промышленных объектов устраиваются сборные, сборно-монолитные и монолитные фундаменты, которые по конструктивным особенностям бывают ленточными, плитными, столбчатыми или свайными.

Ленточные конструкции выполняются под несущие наружные и внутренние стены из силикатного или керамического кирпича, газо- или пенобетонных блоков. Выполняются как на естественном основании, так и на свайном.

Читайте также:  Пространственная арматура для армирования фундамента

Плитный фундамент, как и ленточный, может устанавливаться как непосредственно на грунтовое основание, так и на свайное.

Столбчатые конструкции применяются преимущественно для зданий с каркасной системой.

Свайный фундамент применяют широко. А в случаях, когда район строительства представлен слабыми или пучинистыми грунтами, его применение является наиболее целесообразным решением.

Независимо от того, какие выбраны конструктивные решения фундаментов промышленных зданий, все они должны отвечать строительным нормам и правилам, основываться на инженерных расчетах.

2. Преимущества винтовых свай в качестве фундаментов примышленных зданий

Использование свайно-винтовых оснований при устройстве фундаментов под промышленные объекты имеет целый ряд преимуществ:

  • высокие прочностные характеристики;
  • надежность и безопасность;
  • высокая скорость установки (объект может быть готов к сдаче на 15-30 % быстрее);
  • возможность выполнения монтажа в сложных грунтовых условиях (сильносжимаемые, пучинистые, многолетнемерзлые и т.д.);
  • долговечность, ремонтопригодность;
  • высокая сейсмоустойчивость;
  • снижение трудозатрат, благодаря частичному или полному исключению земляных работ;
  • возможность проведения работ вблизи от подземных коммуникаций, в условиях уплотненной городской застройки;
  • минимизация ущерба окружающей среде.

Кроме того, винтовые сваи сразу же после установки готовы воспринять проектную нагрузку, а проектирование инженерных коммуникаций можно производить параллельно со строительством промышленного объекта.

Таким образом, очевидно, что в большинстве случаев при возведении фундаментов промышленных предприятий применение свайно-винтовой технологии оптимально.

3. Строительство фундамента промышленного здания с применением винтовых свай на примере ангара, возводимого в ОЭЗ «Алабуга»

В 2018 году на территории особой экономической зоны промышленно-производственного типа «Алабуга» (Елабужский район, Республика Татарстан) в рамках реализации инвестиционного проекта было запланировано строительство производства сложных гранулированных удобрений мощностью 120 тысяч тонн в год.

На первой очереди объекта в качестве фундаментов зданий были использованы забивные железобетонные сваи, объединенные железобетонным ростверком. Данный тип основания продемонстрировал низку эффективность при действии значительных горизонтальных нагрузок (забивные ж/б сваи воспринимают подобные нагрузки боковым сопротивлением), а также высокую удельную материалоемкость, которая не может не отразиться на стоимости.

Учитывая это, заказчик поставил перед специалистами компании «ГлавФундамент» задачу – оптимизировать имеющееся проектное решение второй очереди строительства.

Проанализировав предоставленную проектную документацию, специалисты проектного отдела и отдела НИОКР установили, что планируемый к строительству ангар конструктивно имеет двухшарнирную арочную конструкцию, которая предполагает воздействие на фундамент не только вдавливающих, но и значительных горизонтальных нагрузок.

Было принято решение о применении куста из шести свай:

  • четыре будут расположены под углом 30⁰, что позволит им воспринимать равнодействующую нагрузку как осевую;
  • две будут расположены вертикально для восприятия части вертикальной нагрузки.

Расчет выполнялся для двухлопастных свай со следующими конструктивными параметрами:

  • диаметр лопастей – 490 мм;
  • толщина лопастей – 10 мм;
  • конфигурация лопастей – для грунтов твердой консистенции;
  • диаметр ствола – 159 мм;
  • толщина стенки ствола – 5 мм;
  • длина сваи – 3 600 мм.

Для включения в совместную работу винтовой сваи и максимального объема околосвайного грунта сваи моделировались с различным расстоянием между лопастями (подробнее «Особенности расчета многолопастных винтовых свай»). Помимо межлопастного расстояния, на включение в работу грунта влияют и такие расчетные величины, как шаг, угол наклона и конфигурация лопастей (подробнее «Ключевые принципы подбора параметров лопастей»), которые позволяют выполнить установку с минимальным нарушением структуры грунта.

Выбор толщины металлопроката обусловлен коррозионной агрессивностью грунтов площадки строительства. Для уточнения правильности подбора данного параметра после выполнения расчета срока службы свай в грунте выполняется проверка соответствия остаточной толщины стенки ствола проектным нагрузкам и требованиям нормативной документации (подробнее «Расчет толщины стенки ствола»).

Расчет долговечности выполняется без учета покрытия. Это связано с тем, что в процессе погружения винтовая свая испытывает значительное абразивное воздействие, что не позволяет гарантировать целостность любого покрытия (подробнее «Сравнительный анализ различных типов антикоррозийного покрытия»).

Для подтверждения проектного решения требовалось провести натурные испытания.

Так как испытания одиночной сваи не отражают реальную работу свайного куста, было принято решение о проведении натурного испытания всего фундамента на совместное действие горизонтальных и вертикальных нагрузок.

Максимальные проектные вдавливающие нагрузки на куст – 67 тонн, горизонтальные – 37 тонн. По результатам испытаний были получены максимальные деформации, которые составили:

  • горизонтальные перемещения – 13 мм;
  • вертикальные – 6 мм.

Они показали значительный запас по деформациям (больше чем в 2 раза).

Более того, в результате применения данного технического решения была достигнута экономия более 20 процентов.

Источник

Винтовой фундамент для промышленных зданий

Применение винтовых свай для промышленных объектов началось более двухсот лет тому назад. Сначала это были маяки и причалы. Позже винтовые сваи стали применяться в гражданском строительстве.

Фундаменты под промышленные объекты зачастую приходится строить на сложном грунте, обводненных участках, где есть перепады рельефа. Использование железобетонных свай в таких местах затруднено или экономически нецелесообразно.

Применение фундаментов на основе винтовых свай позволяет:

  • вести строительство на слабых и пучинистых грунтах
  • в короткие сроки установить фундамент и продолжить строительство
  • относительно невысокие вложения
  • установка винтового фундамента может производиться круглый год
  • сложный рельеф не является помехой

При выборе типа фундамента инженеры-проектировщики берут в расчет такие факторы, как:

  • состав грунта
  • глубина промерзания
  • уровень залегания подземных вод
  • предполагаемая нагрузка
  • особенности климата
  • особенности эксплуатации промышленных объектов
  • экономические показатели связанные с ведением строительства

Типовые фундаменты — ленточный или монолит требуют значительно больше времени на установку, и стоят значительно дороже. Винтовые сваи по многим параметрам им не уступают, но в совокупности выигрывают за счет цены и скорости монтажа. Свайный фундамент, как правило, не дает усадки, и может сразу принять вес конструкции.

Источник

Фундаменты для промышленных зданий и сооружений: типы конструкций и особенности устройства

В отличие от гражданских зданий, конструкциям промышленных приходится испытывать не только статические нагрузки (от собственного веса и массы оборудования), но и динамические, вибрационные. Соответственно, фундаменты промышленных зданий должны иметь большой запас прочности и проектироваться не только на основании гидрометеорологических и геолого-геодезических изысканий, но и с учётом технологических и эксплуатационных особенностей сооружения.

Столбчато-ростверковый фундамент

При том, что способов осуществления задачи обычно имеется несколько, во время проектирования возможные вариации сравнивают и выбирают тот, который обеспечит наиболее выгодные технико-экономические показатели.

Выбор, определяемый расчётом

На выбор конструктива фундамента при проектировании промышленных зданий сначала влияет тип основания, на который ему предстоит опираться. Оно может быть как естественным, так и искусственным (насыпным) и иметь разные несущие способности.

Насыпное основание

Согласно с результатами полученных изысканий, определяется тип и конструкционные особенности фундамента, материал его исполнения, размеры в сечении и глубина заложения.

Предельные состояния грунтов

Естественные и насыпные основания обязательно просчитываются по двум видам предельного состояния:

  1. Деформациям – рассчитываются в любом случае. В расчётах учитывается совокупное действие нагрузок и влияние внешних факторов (например, грунтовых вод, способных ослабить прочность грунта).
  2. Несущей способности. Такие расчёты производятся, когда есть опасность воздействия горизонтальных нагрузок – например, сейсмических, либо здание находится на скальном основании или в непосредственной близости с откосом и сместить положение фундамента невозможно. При проектировании подпорных стенок такой расчёт выполняется обязательно.

На подпорные стенки действует горизонтальное давление грунта

Кроме того, при проектировании необходимо предусматривать вероятность изменения гидрогеологии участка застройки не только в процессе исполнения работ, но и в будущем, при использовании здания. Проблемы могут вызваны:

  • естественными колебаниями отметки зеркала подземных вод, как сезонных, так и многолетних;
  • образованием верховодки (локализации поверхностной воды в пустотах грунта выше УГВ);
  • техногенными изменениями, влияющими на уровень залегания подземной воды;
  • степенью её агрессивности как по отношению к грунту, так и к материалам заглубляемых конструкций.

Верховодка может доставлять немало неприятностей строителям

Гидрогеология

Возможные изменения гидрогеологической обстановки и вероятности подтопления на участке застройки должны оцениваться в процессе инженерных изысканий. Во всяком случае, для зданий I и II класса (жилые и общественные), это обязательно. При неблагоприятном развитии событий, проект сразу же предусматривает работы по укреплению грунта, дренажу и водопонижению, либо усиленной гидроизоляции (о способах гидроизоляции фундаментов читайте в статье).

Заглубление подошвы фундамента

На выбор глубины заложения фундамента промышленного здания влияют:

  1. Назначение сооружения.
  2. Конструктивные особенности здания.
  3. Расчётные нагрузки.
  4. Глубина закладки инженерных коммуникаций и фундаментов соседних зданий.
  5. Рельеф территории застройки.
  6. Свойства грунта.
  7. Характер подземных вод.
  8. Сезонное промерзание грунта на местности (УГП).

Принцип закладки фундамента в зависимости от глубины промерзания

Карта промерзания грунтов Вернуться к оглавлению

Фундаменты каркасных зданий

Тип фундамента определяется строением стен здания. Если это сборный железобетонный каркас, в котором вертикальными несущими элементами являются колонны, то для их установки применяются фундаменты стаканного типа (ГОСТ 24476*80).

Фундамент под металлические колонны

Особенности устройства стакана под колонну

Их строение начинается от простого блока с выемкой, в которую вставляется и замоноличивается колонна, до башмака со стаканом, в основании которого имеется опорная подошва в виде одной или двух плит.

Железобетонный стакан под колонну тип 1Ф Фундаментный стакан с башмаком тип 2Ф

  • Фундамент под колонну, как и сама колонна, может быть и монолитным. В данный момент он представляет собой симметричную конструкцию ступенчатой формы с двумя или тремя выступами и подколонной выемкой. Если колонна тоже монолитная, то вместо подколонника в центре плиты при заливке устанавливают выпуски арматуры.

Монолитный фундаментный стакан может быть двойным в тех случаях, когда необходимо установить две смежные колонны. При этом одна из них вполне может быть стальной, а другая железобетонной.

Общий стаканный фундамент для смежных колонн — чертёж Вернуться к оглавлению

Фундаменты для опоры сплошных стен

В зданиях, где основные нагрузки от веса здания воспринимает не каркас, а сплошные стены из блоков или кирпича, фундаменты представляют собой сборную или монолитную ленту. Лента может опираться как на грунт, так и на точечные опоры – столбы или сваи (в этом случае опорную ленту называют ростверком (о строительстве фундамента с ростверком рассказано в нашей статье)).

Сборная и монолитная лента

Лента может быть монолитной, но в целях сокращения сроков строительства на крупных промышленных объектах чаще проектируют сборные фундаменты. Они собираются из неармированных бетонных или железобетонных блоков, плит, подушек, а также укрупнённых или доборных элементов.

Лента в монолитном варианте

  • Плиты (подушки) укладываются плашмя в качестве основания и служат для увеличения площади опорной подошвы. Под ними должно быть предварительно выровненное песчаное основание, либо, если грунт нестабильный, выполняется бетонная подготовка. Блоки используют в качестве стен для вывода ленты на поверхность грунта.

Лента в сборном варианте

  • Сборный фундамент может быть не только сплошным, но и прерывистым. Укладка блоков с разрывами до 90 см помогает сократить расход материала в тех случаях, когда грунт на участке имеет отличную несущую способность. Сокращаются расходы на оплату труда, и соответственно снижается себестоимость конструкции.

Сплошной сборный фундамент

  • При устройстве ленты на просадочном грунте, поверх подушек — прежде чем монтировать блоки, устраивают шов толщиной до 5 см с заложенной в него прослойкой арматуры. Ещё один слой монолита, но уже толщиной до 15 см, предусматривают и поверх самого фундамента.

Прерывистый ленточный фундамент

  • Подушку фундамента делают не из подушек, а монолитом, стенку так же собирают из блоков. Чаще всего такое строение необходимо, когда здание имеет подвал. В этом случае блоки выполняют функции только стенового материала, а монолит воспринимает нагрузки от веса здания и распределяет их на грунт.

Монолитные подушки под блочные стены

  • Полностью монолитная лента имеет форму тавра с расширенной прямоугольной или ступенчатой подошвой. Она заливается по опалубке, установленной либо на уплотнённое насыпное основание, либо на жёсткий подготовительный слой из тощего бетона (подбетонку).

Сечение полностью монолитной Т-образной ленты

Перед бетонированием в опалубку предварительно монтируется объёмный арматурный каркас.

Столбы и фундаментные балки

Если основание вполне прочное, а здание одноэтажное и больших нагрузок не создаст, вместо более дорогой сплошной ленты проектируют фундаменты столбчатого типа.

Столбчатый фундамент с балками

Это монолитные бетонные столбы, расположенные в местах пересечения и примыкания стен, а также в промежутках между ними, с минимальным расстоянием 3 м (максимум 6 м).

Вариант устройства фундаментных столбов

Все опоры связываются между собой фундаментными балками – железобетонными или металлическими, которым и предстоит воспринимать нагрузку от веса стен.

Узел сопряжения фундаментной балки со столбами

Чтобы уменьшить их деформацию, под балками может быть устроена подсыпка из песка или шлака, толщина которой может достигать полуметра.

Источник

Оцените статью