Тампонажный бетон
Устройство тампонажного слоя
При сооружении фундамента мелкого заложения в случае большого притока грунтовых вод в котловане приходится укладывать тампонажный слой бетона под фундаментом (рис. 2.8).
Технология укладки тампонажного бетонного слоя методом вертикально перемещаемой трубы (ВПТ) состоит в следующем:
- на подмостях (размещенных, например, на ограждении), устанавливают бетонолитные трубы, состоящие из звеньев длиной 3–4 м, которые соединяют фланцевыми стыками; в верхней части трубы снабжены воронками, каждая емкостью по 1,2–1,5 м;
- в горловине воронки устраивают пробку (например, из мешковины, заполненной паклей), прикрепленную проволокой к верху воронки;
- бетонолитную трубу опускают нижним концом в воду на дно котлована;
- в приемный бункер подается порция литой бетонной смеси с осадкой конуса 16–18 см, полностью заполняющая бункер;
- проволоку, соединяющую пробку с верхом воронки, обрубают. Масса бетонной смеси, вытесняя воду, устремляется по трубе вниз. При большой длине бетонолитной трубы одновременно с открытием заслонки в горловине бункера над воронкой открывают бадью с бетонной смесью. В противном случае отжатия воды из трубы может не произойти;
- если бетонная смесь не доходит до нужного уровня, трубу немного приподнимают краном и сразу же осаживают на дно котлована;
- в приемный бункер подается новая порция бетонной смеси.
По мере бетонирования литая бетонная смесь постепенно растекается по котловану. С водой соприкасается только верхний слой бетона, т.к. бетонная смесь подается внутрь ранее уложенного объема. После откачки воды из котлована слабый верхний слой бетона необходимо удалить. В процессе укладки бетона методом ВПТ бетонолитную трубу после загрузки в нее порции бетонной смеси слегка наддергивают и быстро осаживают. Это делается, чтобы в любом случае обеспечить заглубление трубы в бетонную смесь не менее чем на 0,8 м и не более чем на 2 м. Мастер обязан непрерывно делать промеры уровня бетона и контролировать достаточность погружения конца трубы в слой бетона.
Рис. 2.8 – Подводное бетонирование по методу ВПТ: a – общая схема; б – порядок работ; 1 – бетонолитная труба; 2 – воронка; 3 – подводный бетон; 4 – клапан; 5 – пробка
Для бетонирования водозащитной подушки в котловане используют несколько бетонолитных труб, которые размещают так, чтобы обслуживаемые ими площади участков перекрывали бетонируемую площадь, накладывала, одна на другую.
Радиус действия бетонолитной трубы R, м, определяется из выражения
где К – показатель сохранения подвижности бетонной смеси, – время, за которое осадка конуса уменьшается до 0,15 м (К = 0,65 ч);
I – интенсивность бетонирования, принимаемая для котлованов не менее 0,3 м3/м2ч (желательно, чтобы эта величина составляла 1–1,2 м3/м2ч, тогда R = 3–4,5 м).
Бетонирование начинают с одной из труб, расположенных у края котлована. Следующая труба включается в работу после того, как бетонная смесь, растекаясь по площади котлована, покроет нижний конец трубы на 30–40 см. При бетонировании несколькими трубами укладка бетонной смеси осуществляется последовательно. Расстояние между соседними трубами не должно превышать 0,7 радиуса действия трубы.
Осуществляя подводное бетонирование, нельзя допускать прорыва воды внутрь трубы. Если же это случилось, надо прекращать процесс бетонирования. Его можно возобновить немедленно, если перерыв не превысил время сохранения подвижности бетонной смеси. Если это время превышено, бетонирование можно продолжать только после достижения подводным бетоном прочности 2–2,5 МПа,
При укладке литой бетонной смеси получается подводный бетон низкой прочности (если расход цемента составляет 400 кг/м3, бетон получится прочностью всего в 10–15 МПа).
Когда есть необходимость получить подводный бетон более высокой прочности, надо резко увеличить расход цемента до 600 кг/м3 и повысить жесткость бетонной смеси. Но жесткая бетонная смесь плохо растекается по котловану, поэтому при ее укладке необходимо применять вибрирование. Для получения жестких бетонных смесей с осадкой конуса 6–10 см к концевому (нижнему) звену трубы длиной до 20 м жестко крепится один вибратор (вибробулава) или два, если длина трубы превышает 20 м. Вибрирование облегчает прохождение смеси по трубе и ее растекание по площади котлована. Максимальный радиус распространения жесткой бетонной смеси при подводном бетонировании с вибрированием составляет 3 м. Вынужденный перерыв в бетонировании не должен превышать 1,5 ч.
Минимальная толщина тампонажного слоя бетона, укладываемого на грунтовое дно, определяется по расчету из условия (hбabγб + G = hwγwab) – равенства веса подушки и гидростатического выталкивающего воздействия воды (с коэффициентом запаса 1,1), но не менее 1,5 м. Водоотлив из котлована разрешается только после набора подводным бетоном прочности не менее 5 МПа. Подводный массив, сооружаемый методом ВПТ, следует доводить до отметки, на 10 см превышающей проектную отметку, чтобы была возможность удалить верхний слабый слой бетона после откачки воды из котлована.
Для чего укладывается тампонажный слой бетона?
Для поддержания положительных температур и создания благоприятного термонапряженного состояния бетона, а также для надежной изоляции между бетоном и водой в уровне днища рекомендациями допускалось в зимнее время в случае необходимости укладывать подводным способом в опалубку тампонажный слой бетона толщиной 0,5 м ниже проектной отметки подошвы оголовка пирса. В тампонажный слой предварительно перед бетонированием укладывались паровые трубы. Кстати, монтаж металлоконструкций производят еще до укладки тампонажного слоя бетона.
Перед бетонированием тампонажного слоя для предотвращения его замерзания, а также для обогрева металлического шпунта вода в опалубке в месте укладки бетонной смеси прогревалась до температуры 15—20° С. Тампонажный слой бетона укладывался с температурой 12° С на днище опалубки под воду.
Прогрев тампонажного слоя осуществлялся паровыми трубами непрерывно в течение 1 —1,5 суток. После отвердевания тампонажного слоя бетона предполагались откачка воды из опалубки, последующая установка арматуры, отогрев горячим воздухом опалубки и ранее уложенного тампонажного слоя бетона и бетонирование «насухо».
Несмотря на выполнение всех мероприятий, предусмотренных рекомендациями, обеспечить полную непроницаемость опалубки не удалось, поэтому бетон укладывыетсяя частично в воду. Укладка бетона осуществлялась методом «с островка». Бетон подавался в одно место, при вибрировании он погружался на дно опалубки, поднимая верхние слои. При этом с водой соприкасался ограниченный объем бетона.
Блоки оголовка бетонировались непрерывно. Высота бетонируемых блоков находилась в пределах 1,5—2 м. При укладке бетона велся контроль за температурой, Объемом вовлекаемого воздуха и подвижностью транспортируемой бетонной смеси; осуществлялся отбор контрольных образцов из каждой партии бетона. Учитывая, что условия подогрева заполнителей и воды на бетонном узле не позволяли получить товарную смесь с температурой 30—35° С, а только с температурой 20°С (бетонная смесь после укладки имела температуру 12°С), было принято решение о дополнительном обогреве бетона паром в верхней части оголовка. С этой целью над оголовком устраивался временный деревянный короб, внутри которого прокладывались две паровые трубы на длину бетонируемого участка. Сверху короб изолировался толем.
Как показал анализ температурных полей в теле оголовка и причального выступа, полученных на гидроинтеграторе В. С. Лукьянова, с учетом подачи пара в верхнюю область оголовка, наблюдалось бурное тепловыделение в центре оголовка и в выступе.
В результате этого температура бетона поднялась во всех точках оголовка до 40—50° С, что позволило бетону набрать прочность 70% в течение трехсуточного срока твердения. Однако при этом в поверхностных слоях бетона сложилось неблагоприятное термонапряженное состояние. После остывания бетона до 0° С высверливались керны из бетона, находящегося в зоне переменного уровня воды, для последующего испытания бетона на морозостойкость.
Способ укладки тампонажного слоя в котловане, огражденном шпунтом
Изобретение относится к области строительства, и в частности к укладке тампонажного слоя в шпунтовом ограждении. Технический результат — улучшение качества тампонажного слоя и снижение количества бетона в тампонажном слое. Бункер с бетонолитной трубой и закрытым водонепроницаемым затвором загружают бетоном из бетоносмесителя, переносят бункер в шпунтовое ограждение в место, где необходимо произвести бетонирование, и устанавливают бетонолитную трубу затвором на грунт. После этого расфиксируют затвор. Приподнимают бункер с бетонолитной трубой на высоту 0,5-0,6 диаметра трубы и укладывают порцию бетонной смеси, равную объему бункера в нужном месте. После укладки порции бетонной смеси бункер с бетонолитной трубой извлекают, закрывают водонепроницаемый затвор и загружают бункер бетонной смесью, после чего процесс повторяется. 5 ил.
Изобретение относится к области строительства и может быть использовано в транспортном и гидротехническом строительстве, например при укладке тампонажного слоя из подводного бетона на строительстве опор мостов, фундаментов под маяки и т.д. в шпунтовом ограждении.
Известен способ укладки подводного бетона методом вертикального перемещения трубы (ВПТ), состоящий из опускания бетонолитной трубы, в нижней части которой установлен открывающийся и закрывающийся клапан, установки внутрь трубы пробки и подачи бетонной смеси в бетонолитную трубу. За счет регулирования степени открытия клапана бетонная смесь, следуя за пробкой, постепенно опускается вниз и через нижний конец трубы выпускается на поверхность подводного грунта. Для дальнейшего бетонирования необходимо приподнимать трубу и производить бетонирование по высоте /JP, 60-498, E 02 D 15/06, 1985/.
Недостатком этого способа является то, что затвор расположен на некотором расстоянии от конца бетонолитной трубы и вода с грунтом попадает в бетонную смесь. Это приводит к неоднородности укладываемого бетона.
Известен способ укладки подводного бетона в обсадных трубах с использованием бетонолитной трубы, имеющей водонепроницаемый затвор в нижней части.
Способ заключается в следующем.
Загружают бетоном бункер с бетонолитной трубой, конец которой герметично закрыт затвором, затем уплотняют бетонную смесь в бетонолитной трубе вибратором и открывают затвор. После чего опускают бетонолитную трубу до низа бетонируемой конструкции и приподнимают на высоту 10-15 см, включают вибратор и укладывают бетон. Последующим заполнением бетонной смесью бетонолитной трубы и с лидерным ее подъемом производят бетонирование методом вертикального подъема трубы /метод ВПТ/ /SU, 392208, E 02 D 15/07, 1971/.
Недостатком такого способа ВПТ является то, что для достижения однородности укладываемой бетонной смеси необходимо постоянное расположение конца трубы в ранее уложенном бетоне.
При бетонировании, например, набивных свай этот метод широко применяется. Но при бетонировании больших площадей требуется установка нескольких таких устройств для непрерывности тампонажного слоя. Но в этом случае точная дозировка бетонной смеси не гарантируется.
Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является способ укладки тампонажного слоя, заключающийся в установке по верху шпунтового ограждения поперечного мостика с расположенными на нем несколькими бункерами с бетонолитными трубами, нижний конец которых перекрыт затвором. При открытых створках затвора производят бетонирование тампонажного слоя до достижения проектной отметки бетона под мостиком путем излива бетона из каждой трубы, причем ее нижний торец при этом размещен в изливаемом бетоне, после этого мостик перемонтируется на следующую полосу бетонирования /Костерин Э.В. Основания и фундаменты. М. Высшая школа, 1978, с. 124-126, рис. 5.13/.
Недостатком этого способа является громоздкость конструкции, сложность получения ровной поверхности тампонажного слоя и необходимость применения бетона большой пластичности для захвата большой площади бетонирования, что снижает прочность укладываемого бетона.
Техническим результатом предложения является снижение металлоемкости, возможной точной дозировки в любой точке площади бетонирования, увеличение прочности укладываемого бетона за счет увеличения жесткости бетонной смеси, исключение необходимости сдвижки ранее уложенного массива бетона. Кроме того, исключается необходимость непрерывности бетонирования, связанной с необязательностью заглубления бетонолитной трубы в ранее уложенный бетон. Технический результат достигается за счет того, что в способе укладки тампонажного слоя в котловане, огражденном шпунтом, включающем подводную укладку бетона на дно котлована отдельными участками путем установки на дне котлована загруженного бетоном бункера с прикрепленной к нему бетонолитной трубой, нижний конец которой перекрыт затвором со створками, подъем трубы с одновременным изливом из нее бетона при раскрытых створках затвора и с размещением при этом нижнего торца трубы в изливаемом бетоне, осуществляют на высоту, равную 0,5-0,6 ее диаметра, а излив бетона осуществляют в объеме, равном объему бункера, причем после излива бетона извлекают трубу из котлована при закрытых створках затвора, заполняют бункер бетоном и перемещают трубу на очередной участок бетонирования.
Сущность поясняется чертежами, где изображено: на фиг.1 загрузка бетонолитной трубы при закрытом водонепроницаемом затворе, на фиг.2 — установка бетонолитной трубы в шпунтовом ограждении на грунт; на фиг.3 — подъем бетонолитной трубы на 0,5-0,6 ее диаметра и укладка порции бетонной смеси; на фиг. 4 укладка бетонной смеси на очередном участке котлована; на фиг.5 водонепроницаемый затвор.
На плавучей опоре 1 установлен бетоносмеситель 2, который загружает бункер 3 с бетонолитной трубой 4, поднимаемый крюком крана 5.
В бункере 3 проходит направляющая труба 6, в которой расположен трос 7, связанный через рычаг 8 и тяги 9 с установленными шарнирно створками 10 водонепроницаемого затвора 11.
Трос 7 связан через блочок 12 с лебедкой 13, установленной на бункере 3.
Способ осуществляется следующим образом.
Бункер 3 с бетонолитной трубой 4 и закрытым водонепроницаемым затвором 11 загружают бетонной смесью из бетоносмесителя 2, установленного на плавучей опоре 1, затем краном переносят бункер 3 с бетонолитной трубой 4 в шпунтовое ограждение 14 в место, где необходимо произвести бетонирование, и устанавливают бетонолитную трубу 4 затвором 11 на грунт.
После этого расфиксируют створки 10 затвора 11, стравив трос 7 лебедки 13. Крюком 5 крана приподнимают бункер 3 с бетонолитной трубой 4 на высоту 0,5-0,6 диаметра трубы и порция бетонной смеси, равная объему бункера 3, укладывается в ранее намеченном месте, вытесняя илистый грунт.
Торец бетонолитной трубы в это время располагается в укладываемом бетоне. Экспериментально было выяснено, что при загрузке полностью бункера 3 объема 2,5-3,0 куб.м. для укладки бетонной смеси на грунт необходимо приподнять бетонолитную трубу 4 на 0,5-0,6 ее диаметра /диаметр бетонолитной трубы 300 мм/.
После укладки бетонной смеси бункер 3 с бетонолитной трубой 4 извлекают из воды, закрывают створки 10 водонепроницаемого затвора 11, подтянув трос 7 лебедкой 13, и вновь загружают бункер 3 бетонной смесью.
Бетонолитную трубу 4 подают уже к ранее уложенному бетонному слою и, проделав те же операции, укладывают новую порцию бетонной смеси с перекрытием на ранее уложенный бетон.
Процесс повторяется до полной укладки тампонажного слоя в шпунтовом ограждении.
Способ укладки тампонажного слоя в котловане, огражденном шпунтом, включающий подводную укладку бетона на дно котлована отдельными участками путем установки на дне участка котлована загруженного бетоном бункера с прикрепленной к нему бетонолитной трубой, нижний конец которой перекрыт затвором со створками, подъем трубы с одновременным изливом из нее бетона при раскрытых створках затвора и с размещением при этом нижнего торца трубы в изливаемом бетоне, отличающийся тем, что подъем трубы осуществляют на высоту 0,5 0,6 ее диаметра, а излив бетона осуществляют в объеме, равном объему бункера, причем после излива бетона извлекают трубу из котлована при закрытых створках затвора, заполняют бункер бетоном и перемещают трубу на очередной участок бетонирования.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Тампонажный цемент — Цемент и бетон
Тампонажным цементом называется портландцемент (обыкновенный или его разновидность), пригодный для цементации нефтяных скважин.
Он имеет состав обычного портландцемента, как показывает следующая выдержка, взятая из стандарта 10-А Американского нефтяного института на тампонажный цемент:
«Определение. Цемент, соответствующий настоящим техническим условиям, представляет собой продукт помола клинкера, состоящего в основном из гидравлических силикатов кальция, к которому не разрешается добавлять при помоле или после него никаких веществ, кроме соответствующих добавок для регулирования схватывания.
Добавкой, регулирующей схватывание, может быть вещество, не оказывающее вредного действия на долговечность цемента и не вызывающее падения прочности после первого дня твердения».
Тампонажные цементы делятся на два вида: 1) цементы нормального схватывания и 2) цементы замедленного схватывания. К первому виду относятся три класса цементов, охватываемых стандартом АСТМ С-150—55:
Класс А. В основном стандартный портландцемент типа I, который может применяться для тампонирования нефтяных скважин глубиной не больше 1800 м, где от него не требуется никаких специальных свойств.
Класс В. В основном стандартный портландцемент типа II, который может применяться для тампонирования нефтяных скважин глубиной не больше 1800 м в условиях умеренной сульфатной агрессии.
Класс С. В основном стандартный портландцемент типа III, который может применяться для тампонирования нефтяных скважин глубиной не больше 1800 м в тех случаях, когда требуется высокая прочность в ранние сроки твердения.
Однако, поскольку эти портландцемента применяются в необычных условиях, к ним предъявляются несколько отличные от стандартных требования в отношении физических свойств, в частности, е отношении прочности и сроков загустевания.
Тампонажные цементы медленного схватывания отличаются от обыкновенных цементов тем, что в них содержатся специальные замедлители, добавляемые, помимо гипса (или вместо гипса), при помоле или после него. Назначение этих добавок состоит в том, чтобы замедлить гидратацию цемента и таким образом удлинить сроки схватывания при тампонировании скважин глубиной от 1800 до 4800 м. В таких глубоких скважинах температура и давление на дне столь высоки, что обычный портландцементный раствор схватился бы и затвердел раньше, чем его удалось бы накачать до требуемой глубины.
Тампонажный цемент применяется в виде жидкого теста или пульпы, содержащей 40—50% воды (по весу цемента), и накачивается в скважину насосом. Время, по истечении которого тесто становится слишком густым (или вязким) и не может накачиваться насосом, называется сроком загустевания тампонажного цемента. Срок загустевания зависит от таких факторов, как вид цемента, водо-цементное отношение, давление и температура на дне скважины. Он определяется в лаборатории и характеризуется временем, необходимым для того, чтобы вязкость теста достигла 100 пуазов (или иной заданной величины) при испытании на стандартном приборе, называемом консистометром и специально сконструированном для данной цели.
Согласно стандарту 10-А Американского нефтяного института (1952 г.), тампонажные цементы замедленного схватывания делятся на три класса: D, Е и F и предназначаются для цементации нефтяных скважин глубиной соответственно 3600, 4200 и 4800 м. С дальнейшим улучшением качества замедлителей и цементов число этих классов можно будет сократить до двух и даже до одного. Вместе с тем по мере углубления скважин до 5400 и 6000 м и усложнения условий бурения может возникнуть необходимость в создании цемента нового класса.
Бурение нефтяных скважин в США началось в 1859 г. Однако-до 1907—1908 гг. тампонирование скважин не производилось. К этому периоду относится первая удачная попытка уплотнения обсадных труб портландцементным тестом для защиты нефтяных слоев от проникания воды. Эти первые опыты, хотя они и проводились с помощью весьма примитивного оборудования, подтвердили пригодность портландцемента для этих целей и открыли новую область для его применения. С момента этих опытов началось развитие специальных тампонажных цементов.
Вначале для тампонирования нефтяных скважин применялся обыкновенный портландцемент, который в те времена не имел нормированного минералогического состава и характеризовался довольно грубым помолом — до величины удельной поверхности 1200—1300 см2/г (по Вагнеру). Портландцемент грубого помола отличался медленным схватыванием, особенно при тех температурах и давлениях, которые наблюдались в сравнительно неглубоких скважинах того времени. Таким образом, пуск скважины в эксплуатацию зачастую задерживался до тех пор, пока цемент не схватывался и не приобретал необходимую прочность. Эта задержка носила название «выжидательного срока» и в наше время стала отрицательной величиной, так как при современных сложных методах бурения цемент успевает приобрести необходимую прочность еще до окончания буровых работ.
В связи с «выжидательным сроком» нефтяники видвинули требование, чтобы цемент для тампонирования скважин имел более высокую тонкость помола, а следовательно, быстрее схватывался и набирал заданную прочность. Поэтому многие тампонажные цементы в первое время представляли собой просто стандартные портландцементы, измолотые до удельной поверхности 1800— 2000 см2)г (по Вагнеру) и продававшиеся по более дорогой цене из-за дополнительных расходов на помол. Постепенно тонкость помола тампонажных цементов повышалась, и современный цемент класса С в этом отношении приближается к быстротвердею-щему портландцементу типа III.
Но углубление нефтяных скважин, сопровождающееся повышением температуры и давления, вызвало значительное ускорение гидратации цемента. В результате оказалось, что тонкомолотые тампонажные цементы схватываются слишком быстро и не успевают достигнуть нижних слоев скважины. В связи с этим наметилась тенденция к постепенному понижению тонкости помола и к введению в цемент добавок, замедляющих схватывание.
Начало применению специальных замедлителей положила фирма Халлибартон, занимавшаяся бурением глубоких нефтяных скважин. Она использовала для замедления схватывания цемента при тампонировании смесь гуммиарабика и борной кислоты, которая усиливала замедляющее действие гипса, добавляемого при помоле. С тех пор было найдено много других замедлителей, как, например, казеин, различные соединения лигнина и т. д. Однако ни один из применяемых ныне замедлителей не является эффективным на глубине 4800 м и больше.
Исходя из того, что причиной быстрого схватывания и твердения цемента, особенно в условиях повышенных температур и давлений, является присутствие трехкальциевого алюмината, Суэйзе из фирмы Лоун Стар изготовил специальный клинкер с нулевым содержанием СзА. Будучи сравнительно крупно измолот, этот клинкер дал цемент, который сохранял в течение очень долгого времени способность к накачиванию (т. е. подвижность). Безалю-минатный клинкер был получен путем введения в сырьевую смесь такого количества железа, которое связало весь глинозем в форме C4AF и частично — C2F. Безалюминатный или малоалюминат-ный цемент до сих пор производится на нескольких заводах в США и Мексике.
Хотя в стандарте предусматривается минимальная прочность для медленно схватывающегося тампонажного цемента класса Е, на практике этот показатель не играет существенной роли. Например, Фаррис показал, что минимальная прочность на растяжение должна составлять 0,56 кг/см2, а время, необходимое для получения этой прочности, в 3 раза больше того, которое требуется для придания цементному шламу вязкости в 100 паузов. Для тампо-нажного цемента достаточна такая прочность, которая предохраняет его от разрушения при удалении цементной пробки или при спуске давления в обсадной трубе.
Решающим показателем при испытании медленно схватывающихся тампонажных цементов является время загустевания. Для этого испытания созданы различные приборы: консистометр Калифорния Стандард (КС), консистометр Халлибартон и консистометр Станолинд. Первые два предназначены для определения загустевания цементной пульпы (40% воды к весу цемента) только в условиях повышенного давления. Консистометр Станолинд позволяет измерять загустевание при повышенных давлениях и температурах, что делает его более эффективным в условиях прохождения глубоких скважин.
Тампонажные цементы предназначаются для заполнения частично или полностью свободного пространства между обсадной трубой и стенками скважины, чтобы предупредить просачивание воды в нефтеносный слой и выбросы нефти и газов, защитить обсадные трубы от разъедающего действия агрессивных вод и закрепить обсадку, уменьшив тем самым напряжение на стальные трубы.
Помимо того, тампонажные цементы применяются для прекращения доступа воды в скважину, для уменьшения перемешивания газа и нефти путем закупорки трещин и пор в породе, а также для корректировки ошибок при перфорации обсадных труб на различном уровне. Они могут быть использованы и для таких целей, как заливка скважины для уменьшения ее глубины, создание защитных слоев на нижней части обсадной трубы и заделка повреждений в обсадных трубах.
Источник