- Теплотехнический расчёт стены
- Теплотехнический расчёт однородной наружной стены здания
- Исходные данные
- Определение требуемого сопротивления теплопередаче
- Определение приведённого сопротивления теплопередаче стены
- Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции
- Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи
- Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
- Теплотехнический расчёт наружной стены здания с учётом неоднородности
- Исходные данные
- Определение удельных потерь теплоты кладочной сетки
- Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи
- Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
- Сравнение результатов расчёта
- Теплотехнический расчет стены.
- Необходимые для расчета нормативные документы:
- Исходные данные для расчета:
- Теплотехнический расчет.
Теплотехнический расчёт стены
Теплотехнический расчёт однородной наружной стены здания
Исходные данные
Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:
№ слоя | Слой | δ, мм | λ, Вт/(м °С) | γ, кг/м 3 |
1 | Кладка из кирпича керамического пустотного | 120 | 0.64 | 1300 |
2 | Минераловатный утеплитель | 150 | 0.039 | 60 |
3 | Кладка из кирпича керамического полнотелого | 380 | 0.81 | 1600 |
4 | Штукатурка ц.п. | 20 | 0.91 | 1800 |
Определение требуемого сопротивления теплопередаче
Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:
где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].
Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]
где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]
Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,
Определение приведённого сопротивления теплопередаче стены
где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;
Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:
δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.
Расчетное значение сопротивления теплопередаче, R0:
R0 > Rreq — Условие выполняется
Толщина конструкции, ∑t =675 мм;
Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции
Значение выразим из формулы (5.4) СП 50.13330.2012
Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.
Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи
Схема ограждающей конструкции:
Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м
Шаг 1 геометрия
Шаг 2 Создание элементов конвекции
Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.
Шаг 3 характеристики материалов
В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.
Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);
Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.
Шаг 4 Внешняя нагрузка
Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.
Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).
Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:
Теплотехнический расчёт наружной стены здания с учётом неоднородности
Исходные данные
Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.
Определение приведённого сопротивления теплопередаче с учётом неоднородностей
Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр 0, (м 2 *°C)/Вт, следует определять по формуле:
где R усл 0 — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;
где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);
Определение удельных потерь теплоты кладочной сетки
Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.
Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м
Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015
Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м
dут, мм | λ0 = 0,2 | λ0 = 0,6 | λ0 = 1,8 |
50 | 0,005 | 0,008 | 0,011 |
80 | 0,005 | 0,007 | 0,009 |
100 | 0,004 | 0,007 | 0,008 |
150 | 0,004 | 0,005 | 0,006 |
Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м
dут, мм | λ0 = 0,2 | λ0 = 0,6 | λ0 = 1,8 |
50 | 0,018 | 0,031 | 0,043 |
80 | 0,018 | 0,028 | 0,035 |
100 | 0,017 | 0,026 | 0,031 |
150 | 0,015 | 0,021 | 0,024 |
Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ0, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ0 = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.
Потери теплоты по таблице Г.42:
Потери теплоты по таблице Г.43:
Итоговое значение потерь теплоты:
Суммарная протяжённость линейных неоднородностей Σlj = 2 м.
Подставив полученные значения в формулу (Е.1), получим:
Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи
Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.
Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).
Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:
Сравнение результатов расчёта
Сравнение будем выполнять в табличной форме:
Источник
Теплотехнический расчет стены.
Мы уже ознакомились в статье «Материал стен. Как выбрать.» с различными материалами для возведения стен, в данной статье мы поговорим о теплотехническом расчете для определения параметров стены.
После того, как мы определились с материалом стены, возникает вопрос — Какой же толщины сделать стену, чтобы в доме зимой было тепло, а летом прохладно? Для этого нам понадобится выполнить теплотехнический расчет стены. Расчет выполняется по нормативной документации.
Необходимые для расчета нормативные документы:
- СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года.
- СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года.
- СП 23-101-2004. «Проектирование тепловой защиты зданий».
- ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».
Исходные данные для расчета:
- Определяем климатическую зону, в которой мы собираемся построить дом. Открываем СНиП 23-01-99*.»Строительная климатология», находим таблицу 1. В данной таблице находим свой город (или максимально близко расположенный от места строительства город), например, для строительства в деревне, расположенной возле г. Муром, мы возьмем показатели г. Мурома! из столбца 5 — «Температура воздуха наиболее холодной пятидневки, с обеспеченностью 0,92» — «-30°С»;
- Определяем продолжительность отопительного периода — открываем таблицу 1 в СНиП 23-01-99* и в столбце 11 (со средней суточной температурой наружного воздуха 8°С) продолжительность равна zht = 214 сут;
- Определяем среднюю температуру наружного воздуха за отопительный период, для этого из той же таблицы 1 СНИП 23-01-99* выбираем в столбце 12 значение — tht = -4,0°С .
- Оптимальную температуру внутри помещения принимаем по таблице 1 в ГОСТ 30494-96 — tint= 20°С;
Затем, нам необходимо определиться с конструктивом самой стены. Поскольку раньше строили дома из одного материала (кирпич, камень и т.п.) — стены были очень толстые и массивные. Но, с развитием технологий, у людей появились новые материалы, обладающие очень хорошими показателями теплопроводности, что позволило значительно сократить толщину стен из основного (несущего материала) добавлением теплоизолирующего слоя, таким образом появились многослойные стены.
Основных слоев в многослойной стене минимум три:
- 1 слой — несущая стена — её назначение передавать нагрузку от вышележащих конструкций на фундамент;
- 2 слой — теплоизоляция — её назначение максимально задерживать тепло внутри дома;
- 3 слой — декоративный и защитный — её назначение делать красивым фасад дома и одновременно защищать слой утеплителя от воздействия внешней среды (дождь, снег, ветер и т.п.);
Рассмотрим для нашего примера следующий состав стены:
- 1 слой — несущую стену мы принимаем газобетонных блоков толщиной 400мм (принимаем конструктивно — с учетом того, что на неё будут опираться балки перекрытия);
- 2 слой — выполняем из минераловатной плиты, её толщину мы и определим теплотехническим расчетом!
- 3 слой — принимаем облицовочный силикатный кирпич, толщина слоя 120 мм;
- 4 слой — поскольку изнутри наша стена будет покрыта слоем штукатурки из цементно-песчаного раствора, тоже включим её в расчет и назначим её толщину 20мм;
Теплотехнический расчет.
Приступаем непосредственно к теплотехническому расчету, а именно — нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.
В первую очередь — определяем норму тепловой защиты из условий соблюдения санитарных норм.
Согласно формулы 3 из СНиП 23-02-2003 «Тепловая защита зданий» рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:
где:
n = 1 — коэффициент, принятый по таблице 6, из СНиП 23-02-2003 «Тепловая защита зданий» для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);
tint = 20°С — оптимальная температура в помещении, из исходных данных;
text = -30°С — температура наиболее холодной пятидневки, значение из исходных данных;
Δtn = 4°С — данный показатель принимается по таблице 5, из СНиП 23-02-2003 «Тепловая защита зданий» он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);
αint = 8,7 Вт/(м2×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 «Тепловая защита зданий» для наружных стен.
Выполняем расчет:
получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;
Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.
Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий»:
Dd = (tint — tht)zht = (20 + 4,0)*214 = 5136°С×сут
Примечание: градусо-сутки ещё имеют сокращенное обозначение — ГСОП.
Далее, согласно СНиП 23-02-2003 «Тепловая защита зданий» в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:
Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,
где: Dd — градусо-сутки отопительного периода в г. Муром,
a и b — коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 «Тепловая защита зданий» для стен жилого здания.
таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;
Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;
Определение толщины утеплителя
Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:
где:
δi- толщина слоя, мм;
λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
Рассчитываем термическое сопротивление для каждого слоя
1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.
3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:
Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности,
αext принимается по таблице 14 [5] для наружных стен;
ΣRi = 0,116 + 0,104 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт
Толщина утеплителя равна:
где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:
где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.
Из полученного результата можно сделать вывод, что
R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.
Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором «Теплотехнический расчет стены», где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.
Источник