Температурные деформационные швы кровли

Устройство температурно-деформационного шва на рулонной наплавляемой кровле

В случаях, если деформационный шов устраивается в местах водораздела, и движение потока воды вдоль шва невозможно, или уклоны на кровле более 15%, то при устройстве допустимо использовать упрощенную конструкцию деформационного шва (рис.1). Деформации здания компенсирует верхний минераловатный утеплитель. В кровлях с основанием из профлиста необходимо закреплять основные слои кровельного материала на краях деформационного шва (рис.2).

Температурно-деформационный шов со стенками из легкого бетона или штучных материалов может устанавливаться в кровлях с бетонным основанием или из ж/б плит.

Рис.1 Упрощенная конструкция температурно-деформационного шва на рулонной гидроизоляционной мягкой кровле

Рис.2 Температурно-деформационный шов в кровлях с основание из профнастила

Стенка температурно-деформационного шва устанавливается на несущие конструкции. Край стенки температурно-деформационного шва должен быть выше поверхности кровельного ковра на 300 мм. Шов между стенками должен быть не меньше 30 мм.

Металлический компенсатор, устанавливаемый в температурно-деформационного шва, не может служить пароизоляцией. Необходима укладка дополнительных слоев пароизоляционного материала на компенсатор.

Источник

Сайт инженера-проектировщика

Свежие записи

Деформационный шов кровли и конструкций крыш

Рассмотрим следующие нормативные требования.

СП 17.13330.2011 КРОВЛИ

Актуализированная редакция СНиП II-26-76

4.11 В кровлях с несущим металлическим профилированным настилом и теплоизоляционным слоем из материалов групп горючести Г2-Г4 должно быть предусмотрено заполнение пустот гофр настилов на длину 250 мм материалами группы горючести НГ в местах примыкания настилов к стенам, деформационным швам, стенкам фонарей, а также с каждой стороны конька и ендовы кровли. В случае, если для утепления кровли применяется два и более слоев утепления с разными показателями горючести, необходимость заполнения гофр настилов определяется группой горючести нижнего слоя теплоизоляционного материала.

Заполнение пустот гофр насыпным утеплителем не допускается.

4.15 В рабочих чертежах покрытия (крыши) зданий необходимо указывать:

конструкцию кровли, наименование и марки материалов и изделий со ссылками на документы в области стандартизации;

величину уклонов, места установки водосточных воронок и расположение деформационных швов;

детали кровель в местах установки водосточных воронок, водоотводящих желобов и примыканий к стенам, парапетам, вентиляционным и лифтовым шахтам, карнизам, трубам, мансардным окнам и другим конструктивным элементам.

В рабочих чертежах строительной части проекта должно быть указано на необходимость разработки мероприятий по противопожарной защите, контролю за выполнением правил пожарной безопасности и правил техники безопасности при производстве строительно-монтажных работ.

5.12 Пароизоляцию для защиты теплоизоляционного слоя и основания под кровлю от увлажнения парообразной влаги помещений следует предусматривать в соответствии с требованиями СП 50.13330. Пароизоляционный слой должен быть непрерывным и водонепроницаемым.

В местах примыкания теплоизоляционного слоя к стенам, стенкам фонарей, шахтам и оборудованию, проходящему через покрытие или чердачное перекрытие, пароизоляция должна быть поднята на высоту, равную толщине теплоизоляционного слоя, а в местах деформационных швов она должна быть заведена на края металлического компенсатора и герметично приклеена или приварена.

5.26 В деформационном шве с металлическими компенсаторами пароизоляция должна перекрывать нижний компенсатор, а в шве предусмотрен сжимаемый утеплитель, например из стеклянного штапельного волокна по ГОСТ 31309 или из минеральной ваты по ГОСТ 21880.

Конструкция поперечных соединений листов (деформационных швов) и водоотводящих желобов зависит от угла наклона кровли (приложение С).

Зона расположения неподвижных (жестких) кляммеров на основной плоскости кровли (шириной 3 м) зависит от ее уклона (приложение С).

9.4 Присоединение воронок, установленных по обеим сторонам деформационного шва, к одному стояку или к общей подвесной линии допускается предусматривать при условии обязательного устройства компенсационных стыков.

1 — железобетонная плита; 2 — пароизоляция; 3 — теплоизоляция; 4 — цементно-песчаная стяжка; 5 — основной водоизоляционный ковер из битумных и битумно-полимерных материалов; 6 — дополнительный водоизоляционный слой; 7 — защитный слой; 8 — бортик из цементно-песчаного раствора; 9 — стальной компенсатор; 10 — костыль (полоса 4×40 мм); 11 — защитный фартук из оцинкованной кровельной стали; 12 — деревянный брусок антисептированный и антипирированный; 13 — штукатурка; 14 — минеральная вата; 15 — разделительный слой; 16 — полиэтиленовая пленка; 17 — кладка из многощелевого или поризованного кирпича; 18 — лента для деформационного шва; 19 — приклейка по кромкам

Рисунок Ж.4 — Деформационный шов

а — на кровлях с уклоном от 5 до 9° (9-16%); б — на кровлях с уклоном от 10 до 24° (18-45%); в — на кровлях с уклоном от 25° (47%); 1 — стропило; 2 — обрешетка; 3 — доборный брус; 4 — доска; 5 — объемная диффузионная мембрана; 6 — костыль; 7 — металлическая полоса; 8 — кровля из металлических листов; 9 — фальшпланка; 10 — припой; 11 — загнутый край нижней картины; 12 — загнутый край верхней картины

Рисунок С.4 — Деформационный поперечный шов

Источник

Устройство деформационных швов на кровле

Устройство деформационных швов на кровле

Одним из наиболее частых вопросов, задаваемых подрядчиками, являются вопросы об устройстве деформационных швов. Деформационные швы компенсируют напряжения, возникающие в кровельном ковре при значительной деформации основания кровли и при взаимном смещении его элементов.
Устройство деформационных швов в кровле определяется геометрией здания и его конструкцией. Их отсутствие неизбежно приводит к нарушению водонепроницаемости кровли, независимо от того, какой кровельный материал уложен.
Деформационные швы устраиваются на кровле в следующих случаях:
· над деформационным швом здания
· если длина здания или его ширина более 60м
· в местах сопряжения кровельных оснований с разными коэффициентами линейного расширения ( бетонные плиты перекрытия, примыкающие к основанию из оцинкованного профлиста )
· кровля примыкает к стене соседнего здания (см. рис.3)
· В местах изменения направления укладки элементов каркаса здания, прогонов, балок и элементов основания кровли
· В местах изменения температурного режима внутри помещений (например, теплый цех примыкает к холодному складу)

Чтобы снизить вероятность протечки кровли через деформационный шов уклоны на кровле должны быть сформированы таким образом, чтобы поток воды не перетекал через его конструкцию. Этого можно достичь, формируя уклоны от деформационного шва.


Недостаток конструкции с металлическим компенсатором состоит в том, что при продольных (вдоль оси компенсатора) деформациях может произойти разрыв кровельного ковра в месте крепления компенсатора к основанию.

Компенсатор, устанавливаемый в температурно-деформационных швах (ТДШ), не может служить пароизоляцией. Необходима укладка дополнительных слоев пароизоляционного материала на компенсатор. ТДШ зданий в кровельной конструкции должны проходить через все слои кровли, не ограничивать свободу деформаций отдельных частей зданий и конструкций, обеспечивать водонепроницаемость и целостность всех элементов кровли.

ТДШ должен быть устроен также и на стене примыкания, т. е. быть непрерывным.

ТДШ со стенками из легкого бетона или штучных материалов может устанавливаться в кровлях с бетонным основанием или из ж/б плит.
Стенки ТДШ устанавливается на несущие конструкции. Край стенки ТДШ должен быть выше поверхности кровельного ковра на 300мм. Шов между стенками должен быть не меньше 30мм.

При утеплении ТДШ в примыкании к стене необходимо использовать теплоизоляционные маты с плотностью не менее 20 кг/м3.

Деформационный шов в покрытии


а) традиционном, б) инверсионном

1 — сборная железобетонная плита перекрытия; 2 — пароизоляция; 3 — теплоизоляция; 4 — выравнивающая стяжка; 5 — основной кровельный ковер (см. таблицу 4); 6 — слой материала, уложенный насухо; 7 — стеклоткань; 8 — оцинкованная кровельная сталь; 9 — компенсатор; 10 — утеплитель (минеральная вата); 11 — бортик из легкого бетона; 12 — грунтовка; 13 — предохранительный (фильтрующий) слой из синтетического холста; 14 — пригруз из гравия; 15 — крупнозернистая посыпка верхнего слоя материала; 16 — дюбели.

Примыкание кровли к парапету высотой до 450 мм


1 — сборная железобетонная плита перекрытия; 2 — пароизоляция; 3 — теплоизоляция; 4 — выравнивающая стяжка; 5 — основной кровельный ковер; 6 — крупнозернистая посыпка верхнего слоя материала; 7 — дополнительные слои кровельного материала; 8 — дюбели; 9 — костыли 40х4 через 600 мм; 10 — оцинкованная кровельная сталь; 11 — стена; 12 — грунтовка; i — направление уклона верхней поверхности парапета (для стока воды).


1 — сборная железобетонная плита; 2 — пароизоляция; 3 — теплоизоляция; 4 — выравнивающая стяжка; 5 — основной кровельный ковер; 6 — дополнительные слои кровельного ковра; 7 — герметизирующая мастика; 8 — патрубок; 9 — засыпной утеплитель; 10 — грунтовка; 11 — крупнозернистая посыпка верхнего слоя материала.

Источник

Деформационные швы

Деформационный шов предназначен для уменьшения нагрузок на элементы конструкций здания, в частности кровли, в местах возможных деформаций, возникающих при колебании температуры воздуха, сейсмических явлениях, неравномерной осадки грунта и других воздействий, способных вызвать опасные собственные нагрузки, снижающие несущую способность элементов здания или сооружения. Представляет собой своего рода разрез в конструкции здания, разделяющий его на отдельные элементы и, тем самым, придающий конструкции определенную степень упругости.

Причины возникновения деформации конструкций

Для оценки деформаций в сооружении, прежде всего, необходимо рассмотреть основные причины их возникновения.

Известно, что основными причинами проявления деформаций в сооружении являются нагрузки и воздействия (далее «нагрузки»), классификация которых подробно изложена в нормативных документах — СНиП 2.01.07-85* «Нагрузки и воздействия».

Согласно классификации СНиП, основным критерием подразделения нагрузок является продолжительность их действия, в соответствии с которой различают постоянные и временные, в т.ч. длительные, кратковременные и особые нагрузки.

Но на практике, в дополнение к существующей классификации, следует ввести еще один уточняющий критерий — кратность действия нагрузок. Тогда все виды нагрузок можно подразделить на две условные группы — нагрузки однократного действия и нагрузки многократного, циклического действия. Такая классификация, применительно к конструктивным решениям по обустройству деформационных швов, имеет ряд преимуществ:

  • исходные параметры деформационного шва определяются по величине и сочетанию однократных нагрузок;
  • эксплуатационные параметры деформационного шва подбираются в зависимости от интенсивности воздействия на элементы конструкции многократных нагрузок;
  • учитывается возможность необратимых изменений в конструкциях от однократных нагрузок.

Однократные нагрузки воздействуют на сооружение только единожды, в определенный период времени, иногда весьма продолжительный. Многократные нагрузки непрерывно повторяются, причем интенсивность их действия и интервалы между ними могут изменяться.

К однократным нагрузкам, вызывающим однократные деформации, следует отнести:

  • равномерную осадку сооружения в целом;
  • неравномерную осадку элементов или отдельных частей сооружения;
  • усадку, вызванную процессами схватывания, твердения и вызревания бетона/цементного раствора;
  • пластические деформации (например, прогиб конструкций, изгиб стоек и т.п.), вызванные статическими воздействиями;
  • ползучесть в элементах сооружения, являющуюся следствием длительных статических воздействий.

К многократным нагрузкам, которые приводят к возникновению циклических деформаций, можно отнести:

  • динамические воздействия;
  • набухание или высыхание материалов при изменении их влажности;
  • химические взаимодействия материала конструкции и агрессивных сред, которые также можно отнести и к однократным причинам;
  • изменения объема конструкции от колебаний температуры окружающей среды.

При этом следует учитывать:

  • усадку бетонов/цементных растворов перекрытий или стяжек;
  • изменение относительной влажности воздуха;
  • химические взаимодействия, происходящие в бетоне/цементном растворе;
  • колебания температуры окружающей среды;
  • явление ползучести бетона/цементного раствора.

Влияние усадки

Одной из основных причин, вызывающих деформации конструкции, которые не зависят от нагрузки на сооружение, является усадка бетона/цементного раствора, его способность к изменению объема в процессе твердения, приводящая к возникновению внутренних напряжений.

Усадка — комплексное явление, существуют не одна, а как минимум четыре разновидности усадки:

  • пластическая,
  • гидратационная,
  • гидравлическая,
  • термическая.

Иногда к этим разновидностям еще добавляют усадку от карбонизации.

Пластическая или первоначальная усадка наблюдается в бетонной смеси после ее укладки (до начала схватывания). В течение этого периода вода затворения еще химически не связана с составляющими цемента, и в этой связи могут наблюдаться два физических процесса — испарение воды с открытой поверхности и осаждение твердых частиц смеси с постепенным уплотнением.

Этот вид усадки достаточно хорошо изучен. Величина пластической усадки зависит от состава бетонной смеси, свойств использованных материалов и внешних условий. Так, например, применение жестких бетонных смесей с низким водоцементным отношением, использование водоудерживающих добавок, значительное содержание крупного заполнителя, высокий процент армирования, защита поверхности от испарения воды могут уменьшить конечную величину пластической усадки.

Гидратационная усадка или усадка при внутреннем обезвоживании бетона вызывается тем, что объем образовавшихся гидратов цементного теста меньше объема безводных веществ и воды. Иногда этот вид усадки называют контракционной деформацией или контракцией. Этот вид усадки развивается в период интенсивного протекания химических реакций между цементом и водой и не столько изменяет внешние размеры изделия, сколько способствует изменениям поровой структуры материала, приводя к образованию воздушных пор и уменьшению объема пор, занимаемых водой.

Таблица 1. Показатели деформаций от увлажнения основных строительных материалов

Гидравлическая усадка, или, как ее еще называют, влажностная усадка, проявляется после схватывания бетона и вызывается испарением влаги и ее перераспределением в скелете цементного камня. Гидравлическая усадка проявляется гораздо медленнее, чем пластическая, а ее величина значительно меньше. Эта разновидность усадки зависит от продолжительности и условий выдерживания бетона, вида составляющих бетонной смеси, их расхода, размера инертных заполнителей, формы конструкции, процента армирования.

Термическая усадка происходит в раннем возрасте и вызывается понижением температуры бетона, когда вслед за его разогревом в результате экзотермии при гидратации цемента следует охлаждение, а также в результате воздействия температуры окружающей среды, колебания которой могут быть значительными. Обе эти причины часто сочетаются. Эту разновидность усадки зачастую игнорируют, и деформации бетона, обусловленные ею, объясняют другими причинами. В целом термическая усадка, когда она складывается с усадкой гидравлической, превышает значение теплового расширения бетона/цементного раствора.

Конструкции деформационных швов

В общем виде деформационный шов представляет собой специально сформированный зазор

между двумя или более сопрягаемыми элементами конструкции, который загерметизирован в соответствии с требованиями эксплуатации.

Основной элемент любого деформационного шва — рабочий зазор, в котором при эксплуатации реализуются деформации сопрягаемых элементов конструкции. Кроме того, в конструкции деформационного шва различают его протяженность и форму, а также внутренние боковые поверхности шва и кромки шва. Уплотнительный элемент деформационного шва характеризуется таким параметром, как глубина заполнения, значение которого играет важную роль при использовании мастик и герметиков.

Устройство деформационных швов

Деформационные швы устраиваются в кровле:
— если в этом месте проходит деформационный шов здания;
— если длина здания или ширина более 60 м;
— в местах стыка кровельных оснований с разными коэффициентами линейного расширения (бетонные плиты перекрытия, примыкающие к основанию из оцинкованного профлиста);
— если кровля примыкает к стене соседнего здания;
— в местах изменения направления укладки элементов каркаса здания, прогонов, балок и элементов основания кровли.

Таблица 2. Наибольшие расстояния между деформационными швами в железобетонных конструкциях в м., допускаемые без предварительного расчета.

Внутри отапливаемых зданий или в грунте, м

В открытых сооружениях и в неотапливаемых зданиях, м

Сборные каркасные, в том числе смешанные с металлическими и деревянными перекрытиями

Источник

Читайте также:  Размеры подкладочного ковра под мягкую черепицу
Оцените статью