- Термическое сопротивление бетонной стены
- Теплотехнический расчёт стены
- Теплотехнический расчёт однородной наружной стены здания
- Исходные данные
- Определение требуемого сопротивления теплопередаче
- Определение приведённого сопротивления теплопередаче стены
- Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции
- Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи
- Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
- Теплотехнический расчёт наружной стены здания с учётом неоднородности
- Исходные данные
- Определение удельных потерь теплоты кладочной сетки
- Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи
- Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
- Сравнение результатов расчёта
Термическое сопротивление бетонной стены
Расчет теплопотерь через ограждающие конструкции
Чтобы сделать расчет теплопотерь дома нужно знать темрические сопротивления таких элементов как: Стена, окно, крыша, фундамент и так далее. Чтобы найти термическое сопротивление необходимо знать теплопроводность материалов. Учесть вентиляцию и инфильтрацию. Далее мы это разберем по кусочкам.
Рассмотрим строение куба 5х5 метра. Грани, которого сделаны из бетона толщиной 200 мм.
Соберем из 6 граней (стен) куб. Смотри изображение.
Внутри куба температура 25 градусов. С наружи -30° С градусов. С земли 6° С.
Кстати не многие знают и понимают, что с земли идет температура 6-7 градусов. На глубине 2 метров эта температура стабильно держится. Я имею ввиду Россию, даже зимой на глубине 2 метра держится температура выше нуля круглогодично. Находящийся сверху снег увеличивает сохранение тепла под землей. И если у Вас под полом первого этажа ничего нет, значит, температура там будет стремиться к 6-8 градусам. При условии утепленного фундамента и отсутствии внешней вентиляции.
Задача, пример расчета
Найти теплопотери конструкции имеющие размеры 5х5х5 метров. Стены, которого сделаны из бетона толщиной 200 мм.
Сначала рассчитаем одну стену (грань 5х5 м.) S=25 м 2
R – термическое (температурное) сопротивление теплопередаче. (м 2 •°С)/Вт
Rмат – термическое сопротивление материала (стена/грань)
Rвн – термическое сопротивление воздуха находящегося возле стенки внутри помещения
Rнар – термическое сопротивление воздуха находящегося возле стенки на улице.
авн – Коэффициент теплоотдачи стенки в помещении
анар – Коэффициент теплоотдачи стенки с улицы
Коэффициет теплоотдачи авн и анар найдены опытным путем и принимаются за константу и при расчетах всегда: авн = 8,7 Вт/м 2 ; анар =23 Вт/м 2 . Бывают исключения.
Коэффициент теплоотдачи согласно СНиП
То есть, если это боковые стены и крыша, то коэффициент теплоотдачи принимается равным 23 Вт/м 2 Если это внутри помещения к наружной стене или крыше то принимается 8,7 Вт/м 2 .
В любом случае, если стены утеплены, то влияние теплоотдачи резко становится не значительным. То есть сопротивление воздуха возле стенки примерно составляет 5% от сопротивления самой стены. Даже если Вы ошибетесь в выборе коэффициента теплоотдачи, то результат общих теплопотерь измениться не более чем на 5%.
Все величины известны кроме термического сопротивления материала (Rмат) — стены
Находим термическое сопротивление материала
Известно, что материал стены – бетон, термическое сопротивление находится по формуле
Теплопроводность материалов таблица
Теплопроводность бетона будет 1,2 Вт/(м•°С)
Ответ: Теплопотери одной стены составляют 4243,8 Вт
Посчитаем теплопотери снизу
Ответ: Теплопотери вниз составляют 1466 Вт
В большинстве случаев конструкция снизу выглядит следующим образом
Такая конструкция утепления фундамента позволяет достигнуть эффекта, когда температура под полом у земли достигает 6-8 °С. Это в случаях, когда подпольное помещение не проветривается. Если У Вас имеется вентиляция подпольного помещения, то естественно температура будет снижаться на уровень вентилируемого воздуха. Проветривают подпольное помещение, если требуется исключить попадания вредных газов на первые этажи. Теплые водяные полы на первом этаже в конструкции имеют параизолирующий слой, который препятствует инфильтрации вредных газов и различных паров. Естественно плита перекрытия утепляется до требуемого значения. Утепляют обычно материалом имеющим толщину не менее 50-100 мм, ваты или пенополистирола.
Возвращаемся к задаче
У нас имеется 6 стен, одна из которых смотрит вниз. Поэтому 5 граней соприкасаются с воздухом -30 °С, а грань смотрящая вниз соприкасается с землей, то есть 6 градусов.
Общая сумма тепловых потерь куба составит:
W•5 граней+Wвниз= 4243,8 Вт•5+1466 Вт=22685 Вт
Предлагаю для расчета использовать простой практический пример:
Для жилого дома вентиляцию рассчитывать на каждый квадратный метр площади 1 куб.метр воздуха в час.
Представим что наш куб это двухэтажное здание 5х5метров. Тогда его площадь составит 50 м2. Соответственно его расход воздуха(вентиляция) будет равен 50 м3/час.
Формула расчета тепловых потерь через вентиляцию
Для быстрого расчета вентиляции воспользуемся программой:
Ответ: Теплопотери на вентиляцию составляют 921 Вт.
Требовния СНиП для вентиляции
В итоге для расчета теплопотерь дома нужно найти теплопотери теряемые через ограждения(стены) и вентиляцию. Конечно, в теплотехнике встречается более глубокие расчеты. Например, расчет с применением инфильтрация и сторон света (юг, север, запад и восток).
Инфильтрация – это не организованное поступление воздуха в помещение через неплотности в ограждениях зданий под действием теплового и ветрового давления, а также, возможно, вследствие работы механической вентиляции. Также инфильтрацию называют воздухопроницаемостью.
Расчет инфильтрации – это расчет воздухопроницаемости ограждений за счет давления на стену. Давление на стену создается разностью масс воздуха. Поэтому чтобы Вас не грузить формулами расчета воздухопроницаемости, советую воспользоваться программным обеспечением, с помощью этой программы можно делать расчет инфильтрации воздуха.
Также в теплотехнике при расчете теплопотерь дома встречается понимание того, что в зависимости от положения стен (юг, север, запад и восток) меняются теплопотери. И разница между стеной смотрящий на юг и стеной смотрящей на север: Всего 10%.
То есть к существующим потерям через ограждающую конструкцию (стену) добавляется 10% на северную стену.
Таблица. Добавочный коэффициент на сторону света
На практике часто опытные инженеры не занимаются вычислением сторон света, в силу того что иногда нет информации куда смотрит стена. Поэтому можно грубо добавить 5% мощности к общим теплопоетрям.
Но мы посчитаем, как положено:
Теплопотери через ограждающие конструкции составляет: 23746 Вт.
Вместе с вентиляцией: 23746+921=24667 Вт.
Если мы с наружи куба добавим утеплитель: Пенополистирол толщиной 100 мм. То получим следующее.
Ответ: 432,24 Вт. Без утеплителя через бетонную стену уходит 4243,8 Вт тепла. Разница в 10 раз.
Теплопотери через окна
Для расчета теплопотерь окон используется такая же формула, но для определения теплопотерь используется только значение термического сопротивления определенного образца.
Например, имеется одно окно 1,4 х 1,4 м. площадью 2 кв.метра.
Ответ: 167,17 Вт тепла будет уходить через окно.
Существуют в домах не отапливаемые помещения, как в них посчитать теплопотери?
Обсуждаем данную тему здесь: Форум отопление
Источник
Теплотехнический расчёт стены
Теплотехнический расчёт однородной наружной стены здания
Исходные данные
Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:
№ слоя | Слой | δ, мм | λ, Вт/(м °С) | γ, кг/м 3 |
1 | Кладка из кирпича керамического пустотного | 120 | 0.64 | 1300 |
2 | Минераловатный утеплитель | 150 | 0.039 | 60 |
3 | Кладка из кирпича керамического полнотелого | 380 | 0.81 | 1600 |
4 | Штукатурка ц.п. | 20 | 0.91 | 1800 |
Определение требуемого сопротивления теплопередаче
Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:
где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].
Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]
где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]
Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,
Определение приведённого сопротивления теплопередаче стены
где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;
Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:
δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.
Расчетное значение сопротивления теплопередаче, R0:
R0 > Rreq — Условие выполняется
Толщина конструкции, ∑t =675 мм;
Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции
Значение выразим из формулы (5.4) СП 50.13330.2012
Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.
Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи
Схема ограждающей конструкции:
Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м
Шаг 1 геометрия
Шаг 2 Создание элементов конвекции
Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.
Шаг 3 характеристики материалов
В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.
Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);
Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.
Шаг 4 Внешняя нагрузка
Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.
Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).
Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:
Теплотехнический расчёт наружной стены здания с учётом неоднородности
Исходные данные
Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.
Определение приведённого сопротивления теплопередаче с учётом неоднородностей
Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр 0, (м 2 *°C)/Вт, следует определять по формуле:
где R усл 0 — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;
где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);
Определение удельных потерь теплоты кладочной сетки
Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.
Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м
Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015
Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м
dут, мм | λ0 = 0,2 | λ0 = 0,6 | λ0 = 1,8 |
50 | 0,005 | 0,008 | 0,011 |
80 | 0,005 | 0,007 | 0,009 |
100 | 0,004 | 0,007 | 0,008 |
150 | 0,004 | 0,005 | 0,006 |
Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м
dут, мм | λ0 = 0,2 | λ0 = 0,6 | λ0 = 1,8 |
50 | 0,018 | 0,031 | 0,043 |
80 | 0,018 | 0,028 | 0,035 |
100 | 0,017 | 0,026 | 0,031 |
150 | 0,015 | 0,021 | 0,024 |
Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ0, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ0 = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.
Потери теплоты по таблице Г.42:
Потери теплоты по таблице Г.43:
Итоговое значение потерь теплоты:
Суммарная протяжённость линейных неоднородностей Σlj = 2 м.
Подставив полученные значения в формулу (Е.1), получим:
Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи
Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.
Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).
Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:
Сравнение результатов расчёта
Сравнение будем выполнять в табличной форме:
Источник