ВОПРОС 5. Виды фундаментов глубокого заложения (опускные колодцы, кессоны, тонкостенные оболочки и буровые опоры).
При залегании прочных грунтов на значительной глубине, когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным, а применение свай не обеспечивает необходимой несущей способности, прибегают к устройству ФГЗ. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения, например когда оно должно быть опущено на большую глубину – подземные гаражи и склады, ёмкости очистных, водопроводных и канализационных сооружений, здания насосных станций, водозаборы, глубокие колодцы для зданий дробления руды, непрерывной разливки стали и многие другие.
В настоящее время применяют следующие типы фундаментов глубокого заложения: опускные колодцы и кессоны, тонкостенные оболочки, буровые опоры и фундаменты, возводимые методом стена в грунте.
Опускные колодцы.
Представляют собой замкнутую в плане и открытую сверху и снизу полую конструкцию, бетонируемую или собираемую из сборных элементов на поверхности грунта и погружаемую под действием собственного веса или дополнительной пригрузки по мере разработки грунта внутри нее (рис.13.1 и 13.2.).
Рис.13.1 Последовательность устройства опускного колодца:
а – изготовление первого яруса опускного колодца на поверхности грунта; б – погружение первого яруса опускного колодца в грунт; в – наращивание оболочки колодца; г – погружение колодца до проектной отметки; д – заполнение бетоном полости опускного колодца в случае использования его как фундамента глубокого заложения
Рис.13.2. Формы сечений опускных колодцев в плане:
а – круглая; б – квадратная; в – прямоугольная; г – прямоугольная с поперечными перегородками; д – с закругленными торцевыми стенками
· Форма колодца в плане определяется конфигурацией проектируемого сооружения См. рис.13.2.
Наиболее рациональной является круглая форма, т.к. стенка круглого колодца работает только на сжатие, и при заданной площади основания обладает наименьшим наружным периметром, что уменьшает силы трения по их боковой поверхности, возникающие при погружении. Плоские же стенки опускных колодцев в основном будут работать на изгиб (что далеко не выгодно), но с другой стороны прямоугольная и квадратная форма позволяет более рационально использовать площадь внутреннего помещения.
В любом случае очертание колодца должно быть в плане симметричным, т.к. всякая асимметрия осложняет его погружение (прекосы, отклонения).
Конструкционные материалы для опускных колодцев:
— каменная или кирпичная кладка;
— ж/б- наиболее распространен:
1.Монолитные (только когда форма колодца в плане имеет сложное очертание, нет возможности изготовления сборных элементов, при проходке скальных грунтов и грунтов с большим числом валунов).
2.Сборные (наибольшее предпочтение)
· Погружению колодца в основание сопротивляются силы трения стен колодца о грунт. Для уменьшения трения колодцам придают коническую или цилиндрически уступчатую форму, с использованием тиксотропной суспензии. Оболочка опускного колодца из монолитного ж/б состоит из двух основных частей : 1 – ножевой; 2 – собственно оболочки. См. рис. 13.3.
Рис.13.3. Форма вертикальных сечений монолитных опускных колодцев:
а – цилиндрическая; б – коническая; в – цилиндрическая ступенчатая; 1 – ножевая часть опускного колодца; 2 – оболочка опускного колодца; 3 – арматура ножа колодца
· Ножевая часть шире стены оболочки на 100…150мм со стороны грунта.
· Толщина стен монолитных колодцев определяется из условия создания веса, необходимого для преодоления сил трения.
· Бетон должен быть прочным, плотным (вес) и иметь высокую водонепроницаемость – В35.
· Монолитные ж/б колодцы изготавливают непосредственно над местом их погружения на специально изготовленной выровненной площадке. При hк>10м его бетонирование ведется отдельными ярусами, последовательно. К опусканию преступают только после набором бетоном 100% прочности, что непроизводительно (потеря времени).
К недостаткам монолитных ж/б опускных колодцев также следует отнести:
— большой расход материалов, не оправданный требованиями прочности;
— значительная трудоемкость, за счет их изготовления полностью на строительной площадке;
· Преимущества монолитных колодцев:
— возможность придания им любой формы;
— отсутствие (как правило) опасности всплытия
· Из сборных опускных колодцев наибольшее распространение получили:
— колодцы из пустотелых прямоугольных элементов
Кессоны.
В сильно обводненных грунтах, содержащих прослойки скальных пород или твердых включений (валуны, погребенную древесину и т.д.) погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твердых включений.
В этом случае используется кессонный метод устройства фундаментов глубокого заложения, который был предложен во Франции в середине 19в.
Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.
Рис.13.9. Схема устройства кессона:
а – для заглубленного помещения; б – для глубокого фундамента; 1 – кессонная камера; 2 – гидроизоляция; 3 – надкессонное строение; 4 – шлюзовой аппарат; 5 – шахтная труба
Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.
В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.
Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.
Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.
Шлюзовой аппарат, соединенный с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее.
Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.
Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.
Тонкостенные оболочки.
Тонкостенная оболочка представляет собой пустотелый цилиндр из обычного или предварительно напряженного ж/б. Они начали широко применяться только с появлением мощных вибропогружателей, позволяющих погружать в грунт элементы больших размеров.
Рис.13.10. Конструкция типовой оболочки диаметром 1,6м
Оболочки выпускаются секциями длиной от 6 до 12м и наружным диаметром от 1 до 3м. Длина секций кратна 1м, толщина стенок составляет 12см. На рис 13.10 в качестве примера показана секция оболочки диаметром 1,6м.
Наилучшими типами стыков являются сварной, применяемый для предварительной сборки на строительной площадке, и фланцевый на болтах, используемый для наращивания оболочек в процессе погружения. (рис.13.11)
Рис.13.11. Стыки секций оболочек:
а – сварной стык; б – фланцево-болтовой стык; 1 – стержень продольной арматуры; 2 – ребро; 3 – обечайка; 4 – сварной шов; 5 – стальной стержень; 6- болт
Погружение оболочек в грунт осуществляется, как правило, вибропогружателями. Для облегчения погружения, а также для предотвращения разрушения оболочки при встрече с твердыми включениями конец нижней секции снабжается ножом.
Обычно для повышения сопротивления оболочки действию значительных внешних усилий обычно ее полость после погружения до заданной глубины заполняется бетоном. При погружении в песчаные грунты внизу оставляют уплотненное песчаное ядро высотой не менее 2м. (рис.13.12а)
Рис.13.12 Конструкция сборных железобетонных оболочек:
а – оболочка с уплотненным песчаным ядром; б – усиленная оболочка с несущей диафрагмой; в – оболочка, заделанная в скалу; г – оболочка с уширенной пятой; 1 – оболочка; 2 – бетонное заполнение; 3 – нож; 4 – несущая диафрагма; 5 – арматурный каркас; 6 – буровая скважина в скальной породе; 7 – уширенная пята
Благодаря этому сохраняется естественная плотность песчаного грунта в основании оболочки, что обеспечивает лучшее использование его несущей способности.
Наиболее рационально тонкостенные оболочки применять при больших вертикальных и горизонтальных нагрузках. Такие сочетания нагрузок наиболее характерны для мостов, гидротехнических и портовых сооружений.
Буровые опоры.
Буровые опоры представляют собой бетонные столбы, которые возводят путем укладки бетонной смеси в предварительно пробуренные скважины. Укладка бетонной смеси производится под защитой либо глинистого раствора, либо обсадных труб, извлекаемых при бетонировании.
Технология устройства буровых опор та же, что и буронабивных свай. По существу, они представляют собой буронабивные сваи большого сечения (d >80см).
Нижние концы буронабивных опор обязательно доводят до плотных грунтов, поэтому они работают как стойки. Иногда их делают с уширенной пятой.
Буровые опоры обладают значительной несущей способностью (e1000т) и рассчитываются как сваи-стойки.
Стена в грунте.
Этот способ предназначен для устройства фундаментов и заглубленных в грунт сооружений (рис. 13.13).
Рис.13.13. Конструкции, сооружаемые способом «стена в грунте»: а – котлованы в городских условиях; б – подпорные стенки; в – тоннели; г – противофильтрационные диафрагмы; д – подземные резервуары
Способ заключается в том, что сначала по контуру будущего сооружения в грунте отрывается узкая глубокая траншея (b=60…100 см, Hd40…50 м) с помощью жесткого грейфера или механизированного траншеекопателя на проектную глубину с врезкой в водоупор, которая затем заполняется бетонной смесью или сборными железобетонными элементами.
Возведенная таким образом стена может служить конструктивным элементом фундамента, ограждением котлована или стеной заглубленного помещения.
Помимо заглубленных сооружений способом «стена в грунте» можно устраивать противофильтрационные завесы. Устройство «стены в грунте» наиболее целесообразно в водонасыщенных грунтах при высоком уровне подземных вод. Способ особенно эффективен при заглублении стен в водоупорные грунты, что позволяет полностью отказаться от водоотлива или глубинного водопонижения.
Существенным достоинством способа является возможность устройства глубоких котлованов и заглубленных помещений вблизи существующих зданий и сооружений без нарушения их устойчивости, что особенно важно при строительстве в стесненных условиях, а также при реконструкции сооружений.
Технология устройства «стены в грунте».
1. Сооружение «стена в грунте» начинается с устройства сборной или монолитной форшахты, которая служит направляющей для землеройных машин, опорой для подвешивания армокаркасов, бетолитных труб, сборных железобетонных панелей и т.п. и обеспечивает устойчивость стенок в верхней части.
2. Отрывка котлована отдельными захватками. Откопав первую захватку, на всю глубину стены по ее торцам устраивают ограничители, арматурный каркас и укладывают бетонную смесь.
3. Затем переходят к захватке «через одну», а после ее устройства – к промежуточной и т.д., в результате получается сплошная стена (рис. 13.14).
Рис.13.14. Последовательность возведения «стены в грунте»:
а – первая очередь работ; б – вторая очередь работ; 1 – форшахта; 2 – базовых механизм; 3 – бетонолитная труба; 4 – глинистый раствор; 5 – грейфер; 6 – траншея под одну захватку; 7 – арматурный каркас; 8 – бетонная смесь; 9 – забетонированная секция; 10 – готовая «стена в грунте»
Такой метод называется методом последовательных захваток или секционным методом.
Для удержания стен захватки против обрушения по мере углубления в нее подливают тиксотропный глинистый раствор.
После возведения «стены в грунте» по всему периметру сооружения (т.е. конструкция замыкает в плане будущее сооружение) поэтапно удаляют грунт из внутреннего пространства. При необходимости на каждом этапе по периметру устраивают грунтовые анкера или распорки. Если крепления не изготавливаются, то устойчивость стены при удалении грунта обеспечивается ее заделкой в основание. После полного удаления грунта из внутреннего пространства до проектной отметки возводят внутренние конструкции.
Последнее изменение этой страницы: 2017-03-15; Просмотров: 1388; Нарушение авторского права страницы
Источник
Фундаменты глубокого заложения, область применения. Опускные колодцы. Оболочки. Устройство фундаментов методом «стена в грунте». Водоструйная технология. Кессоны.
Фундаментами глубокого заложения– фундаменты, у которых глубина погружения их подошв в несколько раз превосходит размеры в плане.
Фундаменты глубокого заложения устраивают не в открытом котловане, а на поверхности грунта. Их сооружение направленно на сохранность структуры грунтов в основании и передачу больших давлений на плотные грунты.
К фундаментам глубокого заложения относятся:
— фундаменты из оболочек и оболочки, сваи-оболочки
— фундамента без оболочек
— опоры глубокого заложения (столбы)
Опускные колодцы
Идея опускного колодца заключается в следующем. На поверхности грунта вначале устраивают кладку колодца на некоторую высоту. Затем внутри начинают разрабатывать грунт, подкапывая его под стенками колодца и извлекая с помощью землеройных механизмов. Колодец, утрачивая опору, опускается под действием собственного веса, до тех пор, пока не будет пройдена вся толща слабых грунтов, и он не достигнет проектной отметки заложения опоры. В процессе опускания кладку стенок колодца непрерывно наращивают.
Опускной колодец– конструкция, которая в период погружения состоит из стен, а после погружения внутренняя часть заполняется бетонной смесью.
Опускные колодцы применяют для устройства фундаментов мостовых опор, ?дамб?? в причальных сооружениях, набережных, под доменные печи, при строительстве канализационных насосных станций, под оборудование в стесненных условиях.
Обычно применяют на местности, покрытой водой, при высоком уровне подземных вод и при наличии текучих грунтов.
По форме в планеопускные колодцы бывают круглые, квадратные, эллиптические, прямоугольные, ячеистые.
Наиболее целесообразной является круглая форма. В этом случае стенки колодца лучше воспринимают давление от окружающего грунта, и обеспечивается возможность равномерной подработки под стенками при опускании.
Квадратная или прямоугольная форма – в стенках возникают растягивающие напряжения, поэтому они выполняются из железобетона.
По форме продольного сечения:
— в стенке с постоянным сечением
Тиксотропия– способность глинистого раствора загустевать в спокойном состоянии и становится жидким при перемешивании.
Тиксотропная рубашка– щель, заполненная раствором бентонитовой глины.
Бентонит– коллоидная глина, состоящая в основном из минералов группы монтмориллонита. Используют для приготовления буровых растворов, как отбеливающую глину, как связующий материал.
Связность (прочность) грунта, зависящая от толщины слоя рыхлосвязанной воды может резко снижаться при нарушении определённого расположения молекул воды и частиц (например, при динамических воздействиях или перемятии). Со временем возможно восстановление прочности – явление тиксотропии.
Последовательность проектирования опускных колодцев:
Выбирается тип колодца – гравитационные (тяжелые) или облегченные (тонкостенные) и способ погружения.
Рис 1.5 – схема нагрузок, действующих на опускной колодец во время его погружения.
– давление грунта или раствора тиксотропной глины на данной глубине с учетом коэффициента надежности по .
–давление грунта на стенки колодца
–реактивное давление грунта на его нож
–собственный вес колодца
Вес колодца Qдолжен превышать сумму сил трения, развивающихся по его наружной боковой поверхности.
Напряжение сжатия у внутренней боковой поверхности находится по формуле Ляме:
Где Rиr– наружный и внутренний радиус опускного колодца.
Выбирается класс бетона и тип арматуры
Назначаются габаритные размеры колодца в плане и по высоте
Для гравитационных колодцев назначается толщина стен (для облегченных – рассчитывается). Если задаться величиной , то (для облегченных):
Выбирается марка вибропогружателей и их количество
Производится расчет днища колодца на реактивное давление грунта и гидростатическое давление воды
Проверяется прочность стенок колодца при его возможном зависании в процессе погружения. (Колодец армируют вертикальными стержнями из расчета зависания нижней трети колодца).
Проверяется ножевая часть колодца (Еknдействует на нож колодца как консоль)
Проверяется достаточность толщины бетонной подушки, жб плиты днища с точки зрения прочности.
Если опускной колодец служит для понижения уровня подземных вод, то производится проверка на всплытие.
Если она не выполняется, разрабатываются меры по пригрузке, анкеровке колодца.
Лекция 2 – 11.10.12
Опускные колодцы погружаются под действием собственного веса, поэтому их стенки выполняют значительно толще, чем требуется по расчету на прочность. В связи с этим возникла идея принудительного погружения колодцев. Такие конструкции приобрели новое качество – тонкие стенки. Их называют оболочкамиили при наружном диаметре 0,8. 1,6 м –сваями-оболочками.
Рис 2.1
— толщина стенок
Оболочка– это железобетонная труба диаметром от 0,8 до 3м.
Оболочки погружаются в грунт мощными вибромолотами, низкочастотными вибропогружателями, вдавливанием или ввинчиванием (в рыхлые или илистые грунты).
Под действием вибрации оболочка врезается в грунт, нижнее звено оболочки снабжается ножом. Из неё извлекают грунт. После погружения одного звена оболочку наращивают. Звенья оболочки, имеющие фланцы, соединяют на болтах или жестко на сварке. Армирование двойное из двух трубок, соединяемых болтовыми стержнями. Для изготовления оболочек используется бетон класса не ниже В40.
Фланец(Flansch– нем.) – соединительная часть труб, арматуры, резервуаров, валов, и др., представляющая собой обычно плоское кольцо или диск с равномерно расположенными отверстиями для прохода болтов или шпилек.
В трубах и резервуарах фланец с уплотнением обеспечивает герметичность внутри полостей.
При достижении скальной породы через оболочку в скале бурят скважину диаметром, равным внутреннему диаметру оболочки, затем скважину и оболочку заполняют бетоном в 2 этапа. Это позволяет заделывать фундамент в скальной породе.
Из забоя оболочки удаляют шлам (под забоем оставляют пробку из грунта высотой h≈2м) и методом подводного бетонирования в оболочку укладывают слой бетонной смеси толщиной 2..5м.
После того, как уложенный бетон наберет необходимую прочность, воду из оболочки откачивают и дальнейшую укладку бетонной смеси (по всему сечению или только у стен с целью их утолщения) выполняют насухо. Оболочки можно погружать на глубину от 30 м и более.
Глубокие опоры (набивные столбы)выполняются аналогично буронабивным сваям или методом«стена в грунте».Их обязательно доводят до плотных грунтов с той целью, чтобы они работали как стойки.
Набивные столбы изготавливают диаметром более 0,8м с извлекаемой оболочкой, или без неё. Иногда их делают с ?уширенной?? пятой, армируют только в верхней части.
Набивные столбы, выполняемые методом «стена в грунте», имеют следующие особенности: для их изготовления в грунте под защитой глинистого раствора устраивают несколько прорезей, образующих в плане крест, двутавр, трилистник, звезду, замкнутый прямоугольник и т.д.
Затем эти прорези с помощью бетонолитной вертикально перемещающейся трубы заполняют бетонной смесью. Такие опоры выдерживают нагрузку в тысячи кН, хорошо воспринимают горизонтальные нагрузки и изгибающие моменты.
Для лучшего сопротивления изгибу вертикальныеучастки глубоких опор армируют каркасами, которые выпускают для соединения с надземными конструкциями. Несущую способность глубоких опор оценивают как несущую способность свай, изготовленных соответствующим методом.
Сущность метода «стена в грунте»состоит в том, что в грунте отрывают участок глубокой траншеи шириной 0,5..0,8 м . Для поддержания вертикальности стен траншеи в процессе отрывки её заполняют раствором мелкодисперсной тиксотропной глины (обычно бентонитовой). В пределах полученного участка траншеи бетонируют стену-фундамент подводным способом при помощи бетонолитной вертикально перемещающейся трубы. Трубу поднимают по мере заполнения траншеи бетонной смесью до тех пор, пока участок траншеи полностью не будет забетонирован. В траншею перед бетонированием опускают арматурный каркас, выполненный из арматуры периодического профиля. Иногда стенку выполняют из опускаемых в траншею сборных железобетонных элементов, имеющих выпуски арматуры. Стыки этих элементов бетонируют также с помощью бетонолитной трубы.
Образующаяся «стена в грунте» одновременно может служить креплением стен котлована, стеной подземных этажей и фундаментом.
Если «стена в грунте» служит одновременно и фундаментом, то её доводят до слоя плотного грунта, воспринимающего давление, передаваемое её подошвой и боковыми поверхностями на основание.
В последнее время для изготовления глубоких траншей при устройстве «стены в грунте» стали применять водоструйную (струйную) технологию. Её сущность заключается в том, что горизонтально направленная струя воды под давлением до 10 МПа размывает грунт, образуя требуемую щель, которая затем заполняется бетоном.
Лекция 3 – 17.10.12
Сущность устройства фундаментов с помощью кессоназаключается в отжатии подземных вод от места разработки грунта сжатым воздухом. Для этого на месте устройства фундамента делают кессон – большой ящик, перевернутый вверх дном. Кессон образует рабочую камеру, в которую могут спускаться рабочие и инженерный персонал. В рабочей камере по мере её погружения в грунт до 0,2 МПа повышают давление воздуха. Это давление уравновешивает давление подземных вод на данной глубине.
Над рабочей (кессонной) камерой делают шахту, на которую сверху устанавливают шлюзовой аппарат. Все эти устройства герметизируют.
Через прикамерок рабочие входят в шлюз, где давление постепенно повышают до имеющегося в рабочей камере. Через 5-15 мин человеческий организм приспосабливается к условиям повышенного давления. Длительность пребывания людей, при повышенном давлении воздуха, строго ограничено требованиями техники безопасности. Выход через шлюз требует примерно в 3-3,5 раза больше времени, чем вход.
Из-за ограничения максимального давления кессон можно опустить на глубину не более 35-40 м. Работы по возведению фундаментов кессонным методом очень дорогие. Их применяют при наличии в грунте крупных включений или при необходимости опирания фундамента на неровную поверхность скалы.
Для разработки грунта применяют гидромониторы, а для удаления его на поверхность — эрлифты.
После опускания кессона на проектную глубину рабочую камеру заполняют бетоном.
На кессон, кроме нагрузок, действующих на опускные колодцы, оказывает воздействие вес кладки и давление сжатого воздуха.
Источник