- § 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига
- Расчет на опрокидывание здания
- Схема фундамента
- К расчету удерживающего момента
- Как правильно произвести расчет фундамента на опрокидывание
- Анализ поперечной статической устойчивости ГПМ
- Оценка поперечной статической устойчивости с помощью трехмерной модели изделия
- Грузоподъемные краны 2.1. Общие сведения о грузоподъемных кранах
- Сведения и задачи для расчетов
- Расчет снеговой нагрузки
- § 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига
- Пример расчета ленточного фундамента
- Способы измерения
- Опрокидывающий момент
- К расчету удерживающего момента
- Определение типа фундамента для дома
- Методы
- Что еще можно рассчитать, имея значение толщины?
- Необходимый объем бетонного раствора
- Шаг армирования и толщина прута
- Количество арматуры
- Расчет оснований
- Применение метода предельных состояний
- Расчет нагрузок
- Расчет устойчивости фундаментов
- Проверка на сдвиг по подошве
- Проверка на опрокидывание
- Способы подключения асинхронного двигателя
- Способ соединения “звезда”
- Способ соединения “треугольник”
- Методы
- Устройство асинхронного однофазного электродвигателя
- Короткозамкнутый ротор асинхронного однофазного электродвигателя
- Статор асинхронного однофазного электродвигателя
- Теория расчета фундаментов
§ 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига
Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu — сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.
Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания
При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О — см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а — расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.
Устойчивость конструкций против опрокидывания следует рассчитывать по формуле
Ми≤(ус/уn)Мz, (7.5)
где Мu и Мz — моменты соответственно опрокидывающих и удерживающих сил относительно оси возможного поворота (опрокидывания) конструкции, проходящей по крайним точкам опирания, кН·м; ус — коэффициент условий работы, принимаемый при проверке конструкций, опирающихся на отдельные опоры, для стадии строительства равным 0,95; для стадии постоянной эксплуатации равным 1,0; при проверке сечений бетонных конструкций и фундаментов на скальных основаниях, равным 0,9; на нескальных основаниях — 0,8; уn — коэффициент надежности по назначению сооружения, принимаемый равным 1,1 при расчетах для стадии постоянной эксплуатации и 1,0 при расчетах для стадии строительства.
Опрокидывающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы.
Удерживающие силы следует принимать с коэффициентом надежности по нагрузке для постоянных нагрузок Уf где µ — коэффициент трения фундамента по грунту.
В соответствии с требованиями СНиП 2.05.03—84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле
Qr≤(yc/yn)Qz, (7.6)
где Qr — сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус — коэффициент условий работы, принимаемый равным 0,9; уn — коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz — удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.
Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы — с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).
В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.
Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.
При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту:
Источник
Расчет на опрокидывание здания
Когда отношение высоты здания к его размерам в плане велико, а также существует большая податливость основания, то под действием ветровых и сейсмических нагрузок возможно опрокидывание здания. Расчет на опрокидывание здания очень важен, так как напрямую связан с конструктивной безопасностью здания в целом.
«Нормы строительства и проектирования многоэтажных железобетонных конструкций» (JZ 102-79) рекомендуют при расчете на опрокидывание здания придерживаться следующего отношения удерживающего момента MR к опрокидывающему Mov:
«Правила строительства и проектирования многоэтажных железобетонных конструкций» (JGJ 3-91) тот же расчет ведут по условию:
«Строительные нормы сейсмостойкого проектирования» ( GB 50011-2001) предписывают при сочетании нагрузок, в которые входят сейсмические воздействия, коэффициенты сочетания принимать равными 1,0. Для многоэтажных зданий с отношением высоты к ширине больше 4 не допускается отрицательное давление под подошвой фундамента, а также области с нулевым давлением. В остальных зданиях область нулевого давления не должна превышать 15% площади фундамента.
Согласно «Технической инструкции по проектированию конструкций высотных зданий» (JGJ 3-2002) для зданий с отношением высоты к ширине больше 4 в основании фундаментов не должно быть области нулевых напряжений; для зданий с отношением меньше 4 область нулевых напряжений допускается не более 15% площади фундамента.
Схема фундамента
1 — верхняя часть; 2 — подвал; 3 — расчетная точка сопротивления опрокидывающему моменту; 4 — нижняя грань фундамента
- Опрокидывающий и удерживающий моменты
Пусть площадь воздействия момента опрокидывания является площадью его основания, а сила воздействия — горизонтальном сеисмическои нагрузкой или горизонтальной ветровой нагрузкой:
где Mov — опрокидывающий момент; Н — высота здания; С — глубина подвала; V0 — суммарные значения горизонтальной силы.
Удерживающий момент вычисляется в краевых точках от воздействия суммарных нагрузок:
где МR — удерживающий момент; G — суммарные нагрузки (постоянные нагрузки, ветровые и снеговые нагрузки с пониженным нормативным значением); В — ширина подвала.
- Регулирование удерживающего момента и область нулевых напряжений в основании фундамента
К расчету удерживающего момента
Предполагаем, что линии действия суммарных нагрузок проходят через центр основания здания (рис. 2.1.4). Расстояние между этой линией и равнодействующей эпюрой напряжений основания e0, длина области нулевых напряжений В-х, отношения длины области нулевых напряжений и длины основания (В — х)/В определяются по формулам:
Из формул получено отношение площади области нулевых напряжений и площади основания для безопасного удерживающего момента.
Источник
Как правильно произвести расчет фундамента на опрокидывание
Когда отношение высоты здания к его размерам в плане велико, а также существует большая податливость основания, то под действием ветровых и сейсмических нагрузок возможно опрокидывание здания. Расчет на опрокидывание здания очень важен, так как напрямую связан с конструктивной безопасностью здания в целом.
«Нормы строительства и проектирования многоэтажных железобетонных конструкций» (JZ 102-79) рекомендуют при расчете на опрокидывание здания придерживаться следующего отношения удерживающего момента MR к опрокидывающему Mov:
«Правила строительства и проектирования многоэтажных железобетонных конструкций» (JGJ 3-91) тот же расчет ведут по условию:
«Строительные нормы сейсмостойкого проектирования» (GB 50011-2001) предписывают при сочетании нагрузок, в которые входят сейсмические воздействия, коэффициенты сочетания принимать равными 1,0. Для многоэтажных зданий с отношением высоты к ширине больше 4 не допускается отрицательное давление под подошвой фундамента, а также области с нулевым давлением. В остальных зданиях область нулевого давления не должна превышать 15% площади фундамента.
Согласно «Технической инструкции по проектированию конструкций высотных зданий» (JGJ 3-2002) для зданий с отношением высоты к ширине больше 4 в основании фундаментов не должно быть области нулевых напряжений; для зданий с отношением меньше 4 область нулевых напряжений допускается не более 15% площади фундамента.
Анализ поперечной статической устойчивости ГПМ
Угол поперечной статической устойчивости обычно определяется при испытаниях с использованием специального дорогостоящего оборудования. С целью исключения грубой ошибки мы предлагаем на этапе проектирования ГПМ провести предварительную оценку поперечной статической устойчивости с помощью трехмерной модели изделия.
Согласно приложению № 3 Технического регламента о безопасности колесных транспортных средств (п.4.2.1.) «…под углом статической устойчивости понимается угол наклона опорной поверхности опрокидывающей платформы относительно горизонтальной плоскости, при котором произошел отрыв всех колес одной стороны одиночного транспортного средства или всех колес одной стороны одного из звеньев седельного автопоезда от опорной поверхности платформы». Величина угла статической устойчивости, полученная в результате испытаний, должна быть не менее нормативного значения, определяемого коэффициентом поперечной устойчивости транспортного средства.
Оценка поперечной статической устойчивости с помощью трехмерной модели изделия
При проверке поперечной статической устойчивости по заданному углу наклонной плоскости предлагается получить исходные параметры, используя трехмерную модель ГПМ. Из трехмерной модели изделия, наклоненной на угол 30° (в нашем случае — предельный угол наклона), получаем проекционный вид с указанием центра масс изделия (рис. 2). Подобная схема анализа приведена в работе «Анализ методов оценки статической поперечной устойчивости колесных транспортных средств» Бояркина С.В.
Рис. 2. Геометрический расчет поперечной статической устойчивости
Согласно требованиям Технического регламента о безопасности колесных транспортных средств (приложение 3) и ГОСТ Р 52302 определяем нормативный коэффициент поперечной статической устойчивости q из выражения
αс.у. = (–2,4+42,4·q ), q =0,764.
Согласно ГОСТ Р 52302 (график рис. 3, зависимость (5)) находим нормативную величину угла крена подрессоренных масс изделия для заданного αс.у., φ =7,5º.
Величину высоты оси крена h принимаем равной статическому радиусу колеса шасси изделия, которую находим из выражения:
где d — посадочный диаметр обода шины;
ψ — коэффициент вертикальной деформации шины (принимаем значение 0,85);
H — высота профиля шины.
В результате получаем r =0,498 м.
Из точки О, проходящей на высоте h через центр масс, проводим в сторону наклона с углом φ =7,5º линию, определяющую крен подрессоренных масс изделия.
С учетом влияния подрессоренных масс геометрически находим величину смещения центра масс Х для всего изделия и получаем новую точку центра масс, в которой будет приложена сила Q, которая стремится опрокинуть конструкцию.
На основании рекомендаций технического регламента (схема рис. 4.1 приложения 3 указанного регламента) и с использованием чертежа общего вида изделия АЛ30 432530001013А31 находим величину колеи b, приведенной к поперечному сечению изделия в плоскости, проходящей через центр масс.
Проецируя вектор Q на платформу в поперечном направлении (рис. 2), можно сделать вывод о том, что угол поперечной статической устойчивости изделия будет не менее 30º.
Результаты оценки поперечной статической устойчивости автолестницы пожарной подтверждены испытаниями, протокол испытаний № 0410/2.12012 (лаборатория ФГБУ ВНИИПО МЧС России).
Грузоподъемные краны 2.1. Общие сведения о грузоподъемных кранах
Как зависит грузоподъемность крана от вылета?
Грузоподъемность кранов стрелового типа зависит от вылета обратно пропорционально. Максимальную грузоподъемность кран имеет на наименьшем вылете, а при увеличении вылета его грузоподъемность Зависимость грузоподъемности крана от вылета показывает его грузовая характеристика. Рассмотрим грузовую характеристику гусеничного крана ДЭК-251 (рис. 2.3), который имеет максимальную грузоподъемность 25 т на вылете 5 м. При увеличении вылета грузоподъемность крана уменьшается, поэтому при наибольшем для данного стрелового оборудования вылете – 14 м – кран может поднять всего лишь 4 т.
Рис. 2.3. Грузовая характеристика гусеничного крана ДЭК-251 уменьшается
Стропальщику важно понимать эту зависимость, чтобы не допустить перегрузки крана. (доступно при скачивании полной версии книги)
Какие опрокидывающие силы действуют на кран и влияют на его устойчивость?
На кран действуют следующие силы: масса груза Q (рис. 2.4); ветровая нагрузка; сила инерции Fин, которая возникает при изменении скорости подъема и опускания груза.
Рис. 2.4. Устойчивость крана: 1 – выносная опора; 2 – противовес; G – масса крана; Fин – сила инерции; Q – масса груза; a, b – плечи действия сил; РО – ребро опрокидывания (доступно при скачивании полной версии книги)
Уклон рабочей площадки также снижает устойчивость крана. Опрокидывающие силы создают опрокидывающий момент относительно ребра опрокидывания (РО). Опрокидывающий момент, создаваемый грузом, равен произведению массы груза Q на плечо b:
Очевидно, что при увеличении вылета увеличивается плечо b, следовательно, возрастает опрокидывающий момент.
Что удерживает кран от опрокидывания?
Стреловой кран является свободностоящей машиной, которая удерживается от опрокидывания собственной массой G (см. рис. 2.4). Масса крана создает восстанавливающий момент, равный произведению массы крана G на плечо а:
Устойчивость крана повышается за счет увеличения массы крана противовесом 2, который монтируется в задней части поворотной платформы. Вторым способом повышения устойчивости стрелового крана является установка выносных опор 1. Кран расставляет выносные опоры, как человек для повышения устойчивости шире расставляет ноги, при этом увеличивается плечо я, соответственно уменьшается плечо b.
По каким причинам краны теряют устойчивость и опрокидываются?
Возможные причины опрокидывания кранов: превышена грузоподъемность крана на данном вылете; нарушены правила установки стрелового крана (не установлены выносные опоры, установка на свеженасыпанный грунт и т.п.); неисправен рельсовый крановый путь; кран работает при скорости ветра, которая превышает указанную в его паспорте; башенный или другой рельсовый кран не установлен на противоугонные устройства по окончанию работы.
Все краны рассчитаны с запасом устойчивости, поэтому опрокидывание крана всегда является результатом грубого нарушения правил безопасности.
ВНИМАНИЕ! Опрокидывание крана может произойти по вине стропальщика в случае строповки груза, превышающего грузоподъемность крана на данном вылете. | К содержанию книги | Вперед >
| К содержанию книги | Вперед >
Скачать книгу с рисунками и таблицами —
Сведения и задачи для расчетов
Стройка начинается с расчета
Это первое правило строительства и неважно, идет речь о жилом 9-этажном доме или хижине дяди Тома, к примеру. Для расчетов необходимы данные
Сбор сведений – такая же ответственная работа, как и проведение расчетов. Данные собираются по-разному. Это могут быть динамические или статические испытания, а зачастую параметры и значения из таблиц.
Для проектирования фундаментов нужны такие сведения:
- выкладки инженерно-геологических работ;
- характеристика здания – назначение, конструкционные решения, технология строительства;
- какие силы и нагрузки действуют на фундамент;
- наличие близкорасположенных фундаментов и воздействие на них возводимого здания.
Все указания по расчетам оснований зданий и сооружений приведены в одноименном СП 22.13330.2011, актуализированной версии СНиП 2.02.01-83.
При расчетах определают:
- каким будет основание;
- тип, конструкцию, материал и размер фундамента;
- работы по уменьшению влияния деформаций;
- мероприятия для ослабления изменений близлежащих фундаментов.
Расчет снеговой нагрузки
Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.
- Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
- Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м 2 .
- Снеговая нагрузка для Подмосковья по карте равна 126 кг/м 2 . Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м 2 .
§ 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига
Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu — сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.
Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания
При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О — см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а — расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.
Устойчивость конструкций против опрокидывания следует рассчитывать по формуле Ми≤(ус/уn)Мz, (7.5) где Мu и Мz — моменты соответственно опрокидывающих и удерживающих сил относительно оси возможного поворота (опрокидывания) конструкции, проходящей по крайним точкам опирания, кН·м; ус — коэффициент условий работы, принимаемый при проверке конструкций, опирающихся на отдельные опоры, для стадии строительства равным 0,95; для стадии постоянной эксплуатации равным 1,0; при проверке сечений бетонных конструкций и фундаментов на скальных основаниях, равным 0,9; на нескальных основаниях — 0,8; уn — коэффициент надежности по назначению сооружения, принимаемый равным 1,1 при расчетах для стадии постоянной эксплуатации и 1,0 при расчетах для стадии строительства.
Опрокидывающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы.
Удерживающие силы следует принимать с коэффициентом надежности по нагрузке для постоянных нагрузок Уf где µ — коэффициент трения фундамента по грунту.
В соответствии с требованиями СНиП 2.05.03—84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле Qr≤(yc/yn)Qz, (7.6) где Qr — сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус — коэффициент условий работы, принимаемый равным 0,9; уn — коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz — удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.
Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы — с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).
В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.
Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.
При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту:
Пример расчета ленточного фундамента
Для расчета выбирается участок протяженностью 1 м. Определяются усилия, действующие на этот кусок путем деления общей нагрузки от здания на требуемую площадь. В результате расчета получится ширина основания, проверится соотношение удельного давления на почву под участком ленты и сопротивления земли.
Пример: Рассчитывается нагрузка здания сбором усилий. Показатель расчетного сопротивления содержится в таблице ДБН В.1.2. – 10 – 2009. Общая масса строения 238 т делится на площадь основания участка ленты 21,4 м2 и находится давление под подошвой, равное 11,12 т/м2. Из таблицы видно, что аналогичный расчетный показатель грунта составляет 20,0 т/м2, значит фундамент с выбранными габаритами будет надежно работать и не осядет под нагрузкой, при этом задается необходимый запас прочности.
Как сделать расчет фундамента на опрокидывание Ссылка на основную публикацию
- Как обложить дом облицовочным кирпичом без фундамента?
Способы измерения
Существует несколько способов измерения скольжения асинхронного двигателя. Если частота вращения значительно отличается от синхронной, то ее можно измерить с помощью тахометра или тахогенератора, подключенного на валу ЭД.
Вариант измерения стробоскопическим методом с помощью неоновой лампы подходит при величине скольжения не более 5%. Для этого на валу двигателя либо наносят мелом специальную черту, либо устанавливают специальный стробоскопический диск. Освещают их неоновой лампой, и отсчитывают вращение за определенное время, потом, по специальным формулам производят вычисления. Также возможно использование полноценного стробоскопа, подобно тому что показано ниже.
Также, для измерения величины скольжения всех видов машин подходит способ индуктивной катушки. Катушку лучше всего использовать от реле или контактора постоянного тока, из-за количества витков (там 10-20 тысяч), количество витков должно быть не менее 3000. Катушку с подключенным к ней чувствительным милливольтметром, располагают у конца вала ротора. По отклонениям стрелки прибора (числу колебаний) за определенное время высчитывают по формуле величину скольжения. Помимо этого, у асинхронного двигателя с фазным ротором скольжение можно замерить с помощью магнитоэлектрического амперметра. Амперметр подключается к одной из фаз ротора и по числу отклонений стрелки амперметра производят вычисления (по формуле из способа с индуктивной катушкой).
Опрокидывающий момент
Графики коэффициентов сх и си балочных мостов а — автодорожных. б — железнодорожных. |
Опрокидывающий момент одно — и двухпутного моста с поездом изменяется мало по сравнению с моментом без поезда на них.
Опрокидывающий момент от сил давления газов в цилиндрах двигателя, гармонические составляющие которого определяются нагрузкой двигателя и почти не зависят от его скоростного режима, вносит существенный вклад в уровень вибрации силового агрегата.
Схема замещения при включении поперечной компенсации. |
Опрокидывающий момент, таким образом, зависит от второй степени изменения напряжения и резко падает при его снижении.
Опрокидывающий момент, создаваемый весом поднимаемого груза и стрелы с оснасткой, при работе крана может увеличиться за счет силы ветра и инерционных сил, возникающих при торможении опускаемого груза. Поэтому удерживающий момент, создаваемый весом крана и противовесом, должен быть по крайней мере в 1 4 раза больше опрокидывающего момента. Отношение удерживающего момента к опрокидывающему называют запасом устойчивости.
Опрокидывающий момент, создаваемый весом груза и весом стрелы с оснасткой, при работе крана может увеличиться за счет силы ветра и инерционных сил, возникающих при торможении опускаемого груза. Поэтому удерживающий момент, создаваемый весом крана и противовеса, должен быть по крайней мере в 1 4 раза больше опрокидывающего момента.
Опрокидывающий момент, таким образом, зависит от второй степени изменения напряжения и резко падает при снижении напряжения.
Опрокидывающий момент М0п создает на концах лап усилия Рм, различные по величине и направлению. При определенном положении крана часть лап, расположенная по одну сторону от оси АА упругого поворота плиты ( фиг.
Опрокидывающий момент М0п создает положительные давления на правой стороне подошвы фундамента и отрицательные — на левой.
Грузоподъемная мачта. |
Опрокидывающий момент, создаваемый весом груза и весом стрелы с оснасткой, при работе крана может увеличиться за счет силы ветра и инерционных сил, возникающих при торможении опускаемого груза. Поэтому удерживающий момент, создаваемый весом крана и противовеса, должен быть по крайней мере в 1 4 раза больше опрокидывающего момента. Отношение удерживающего момента к опрокидывающему называется запасом устойчивости.
Опрокидывающий момент, передающийся на опоры, изменяется по величине, но в многоцилиндровом двигателе это изменение значительно меньше, чем в одноцилиндровом.
Опрокидывающий момент воспринимается балластом, находящимся на раме лебедки. Для компенсации сдвигающего усилия устанавливают свайные якори, либо прикрепляют лебедку к существующим конструкциям или специальному якорю ( стр.
К расчету удерживающего момента
Предполагаем, что линии действия суммарных нагрузок проходят через центр основания здания (рис. 2.1.4). Расстояние между этой линией и равнодействующей эпюрой напряжений основания e0, длина области нулевых напряжений В-х, отношения длины области нулевых напряжений и длины основания (В — х)/В определяются по формулам:
Из формул получено отношение площади области нулевых напряжений и площади основания для безопасного удерживающего момента.
Определение типа фундамента для дома
Чтобы правильно выполнить расчет фундамента, нужно учесть такие параметры:
- тип почвы;
- глубину залегания подземных вод;
- толщину промерзания грунта;
- вес в зависимости от того, сколько было использовано материалов (газобетона, дерева, железобетонных конструкций).
Для определения несущей способности почвы, нужно знать ее тип, степень плотности и увлажненности.
Методы
В домашних условиях надо выявить показатели несущей способности грунта при помощи колышка.
Если он входит в грунт только при помощи лома, перед застройщиком почва с высоким показателем несущей способности, если почва снимается легко без инструмента вручную, перед застройщиком – рыхлый массив с низкими показателями несущей способности.
Блочный фундамент для дома
Чтобы определить влажность почвы, достаточно растереть ее комок в руке. Если соотношение влаги к сухим компонентам высокое, то она скатается, если низкое, то она рассыплется.
Пластичность грунта определяется на глаз: если его комки остаются на лопате, значит он пластичный. Показатели его несущей способности низкие, и он склонен к усадке.
Чтобы осуществить сбор нагрузок на фундамент, нужно посчитать, сколько весит дом, то есть суммировать массу всех использованных материалов.
Для этого необходимо учесть такие параметры:
- Общий вес, а также объем конструкции (масса материалов).
- Нагрузку от эксплуатации (количество жильцов, мебель).
- Атмосферные нагрузки (осадки, ветер).
Что еще можно рассчитать, имея значение толщины?
Некоторые частные застройщики следуют общепринятым рекомендациям по выбору толщины плиты и не проводят самостоятельные расчеты. Такой способ приемлем в индивидуальном домостроении, если собственник сам берет на себя ответственность за надежность возводимой конструкции.
Таким образом, зная толщину монолита, можно узнать:
- потребность в растворе;
- выбрать шаг армирования и толщину арматуры;
- посчитать количество металлопроката для вязания армирующего каркаса.
Необходимый объем бетонного раствора
Объем бетона находят по обратной формуле:
Объем=Площадь сечения основания ×высоту плиты.
При этом нужно учитывать свойства бетона и условия его затвердевания. На практике делают запас в размере 20% от расчетного параметра.
Шаг армирования и толщина прута
Схему армирования выбирают по действующим правилам СП 63.13330.2018. Если толщина плиты не превышает 0,15 м, то армирование ведут в один слой. В противном случае армирующий каркас состоит из двух поясов, расположенных по отношению друг к другу на таком расстоянии, чтобы вокруг металлической конструкции оставался защитный слой бетона толщиной не менее 4 см.
Шаг между прутками будет от 20 до 40 см в зависимости от типа проектного сооружения:
- 20 см – для фундамента под каркасные и деревянные дома;
- 30 см – для фундамента под здания из кирпича и других тяжелых строительных материалов.
Под несущими стенами и в местах, где будут увеличена нагрузка на фундамент, шаг между арматурой целенаправленно уменьшают.
Диаметр арматурных прутьев, которые используются для усиления фундаментной плиты, является очень важным параметром. Поэтому необходимо предварительно определить сечение прутьев арматуры.
Чтобы определить минимальный диаметр арматурных прутьев, нужно:
- найти площадь сечения плиты;
- найти допустимую площадь сечения прута, которая будет составлять 15% от площади сечения плиты;
- вычислить суммарную площадь арматуры в одном поясе;
- используя длину плиты и шаг между прутками, найти минимальное сечение арматуры.
Чаще всего практикующие строители используют для усиления монолитной плиты арматуру диаметром 12–16 мм.
Количество арматуры
Количество арматуры легко рассчитать, имея перед собой схему армирования фундамента. Поочередно складывают продольные и перпендикулярные прутки, учитывают размер вертикальных перемычек и количество точек пересечения металлических стержней.
Если каркас состоит из двух поясов, то полученное значение увеличивают в двое. Как правило, арматуру продают на вес, поэтому количественный показатель нужно увеличить на плотность металла и перевести в тонны.
Расчет оснований
Разработкой должна быть решена задача обеспечение их устойчивости в любых проявлениях неблагоприятных вариантов нагрузок и воздействий. Ведь потеря устойчивости оснований соответственно повлечет деформацию, а, возможно, и разрушение всего или части здания.
Последствия сдвига фундамента
Проверке подвергаются такие вероятные потери устойчивости:
- сдвиг грунтов основания вместе с фундаментом;
- плоский сдвиг сооружения по соприкосновению: подошва сооружения – поверхность грунта;
- смещение фундамента по какой-либо из его осей.
Помимо нагрузок и других сил, действующих на конструкции, устойчивость здания зависит от глубины заложения, формы, размера подошвы фундамента.
Применение метода предельных состояний
Расчетная схема определения нагрузок достаточно разнообразна и специфична для каждого объекта. На разных этапах до 1955 г. существовали разные методы расчета конструкций: а) допускаемых напряжений; б) разрушающих нагрузок. С момента указанной даты расчеты ведутся по методу предельных состояний. Его особенностью является наличие целого ряда коэффициентов, учитывающих предельную прочность конструкций. Когда такие конструкции перестают отвечать требованиям эксплуатации, их состояние называется предельным.
Упомянутыми СП и СНиП устанавливаются следующие предельные состояния оснований:
- по несущей способности;
- по деформациям.
Деформация фундамента здания из-за смещения
По несущей способности входят состояния, при которых основание и сооружение не соответствуют эксплуатационным нормам. Это может быть лишение ими устойчивого положения, обрушение, разного рода колебания, избыточные деформации, как пример: оседание.
Вторая группа объединяет состояния, которые затрудняют эксплуатацию конструкций или снижают ее срок. Здесь могут иметь место опасные смещения – осадка, крен, прогибы, появление трещин и т. п. Расчет по деформациям выполняется всегда.
Основания рассчитываются по первой группе в таких ситуациях:
- при наличии горизонтальных нагрузок – подпорная стена, работы по углублению подвала (реконструкция), фундаменты распорных сооружений;
- расположение объекта вблизи котлована, откоса или подземной выработки;
- основание состоит из увлажненных или жестких грунтов;
- сооружение находится в перечне по I уровню ответственности.
Расчет нагрузок
Проектированием учитываются все виды нагрузок, возникающих на этапах строительства и эксплуатации зданий и сооружений. Порядок их нормативных и расчетных значений установлен в СП 20.13330.2011, обновленной версии СНиП 2.01.07-85.
Нагрузки классифицируются по длительности воздействия, и бывают постоянными или временными.
В постоянные нагрузки входят:
- вес элементов и конструкций зданий;
- вес насыпных грунтов;
- гидростатическое давление грунтовых вод;
- предварительно напряженные усилия, например: в железобетоне.
Диапазон временных нагрузок более широк. Можно сказать, что к ним относятся все остальные, не вошедшие в постоянные.
Как правило, на основание или конструкцию действует несколько сил, поэтому расчеты предельных состояний выполняются по критическим сочетаниям нагрузок или соответствующим усилиям. Такие сочетания проектируются при анализе состава одновременного приложения различных нагрузок.
По составу нагрузок различаются:
основные сочетания, куда входят постоянные, длительные и кратковременные нагрузки:
особые сочетания, где помимо основных действует одна из особых нагрузок:
Расчет устойчивости фундаментов
Ленточное основание
Пока лишь только поверхностно ознакомившись с методом предельных состояний, можно представить объем информации и количество расчетов, необходимых для правильного проектирования фундаментов. Здесь нет места ошибкам и оплошностям, ведь речь идет о безопасности не только строителей, но и жильцов или рабочих. И хотя риски массового строительства и индивидуального несопоставимы, малейшие сомнения должны побудить застройщика обратиться к проектировщикам.
Сложный расчет подошвы фундамента на опрокидывание начинается с проверки несущей способности основания. В первую очередь необходимо проверить условие:
На разных грунтах сила предельного сопротивления основания будет разной. Для скальных грунтов ее вычисляют таким образом:
На увлажненных грунтах она определяется из равенства между соотношениями нормальных и касательных напряжений в поверхностях скольжения.
Проверка на сдвиг по подошве
Подошва фундамента
Необходимо из всех возможных поверхностей скольжения найти наиболее опасную, и для нее обеспечить равновесие сил: сдвигающих и удерживающих. Проверочными действиями охватываются сочетания нагрузок и различные воздействия. Для каждого случая вычисляется предельная нагрузка.
Обязательным условием расчетов является построение схем и чертежей (на заданную ось или относительно основания), позволяющих определить равенство сил или моментов. В схемах указываются:
- нагрузки от здания;
- вес грунта;
- сила трения по критической поверхности скольжения;
- сила фильтрационного давления.
Поскольку плоский сдвиг по подошве возможен в ситуации, когда механическое взаимодействие грунта и подошвы фундамента путем сцепления меньше горизонтального давления, необходимо произвести расчеты сил на сдвиг и сдерживающих сил. Проверка фундамента на устойчивое положение заключается в соблюдении условия:
где Q1 – составляющая расчетных нагрузок на фундамент, параллельная плоскости сдвига, кН; Еа и Ер – составляющие равнодействующих активного и пассивного давления грунта на боковые грани фундаментов, параллельные плоскости сдвига (кН); N1 – сумма расчитанных нагрузок по вертикали (кН); U – гидростатическое противодавление (кН); b, l – параметры фундамента (м); c1, f – коэффициенты грунтов: сцепления и трения.
Если условие не соблюдается, то сопротивление сдвигу можно увеличить, повышая коэффициент трения. Тогда под фундамент нужно готовить гравийно-песчаную подушку. Посмотрите видео, как сделать песчаную подушку для увеличения устойчивости фундамента.
Сдвиг по подошве обычно происходит на мало сжимаемых грунтах. Зачастую наблюдается глубинный сдвиг внутри грунтового массива.
Проверка на опрокидывание
Это последний этап проведения расчета на опрокидывание. Он скорее формальный, поскольку опрокидывание по одной из граней подошвы может быть вероятным при строительстве на жестком основании – скальных грунтах. В отличие от них сжимаемые основания предрасположены к возникновению кренов, тогда точка вращения смещается к центру фундамента.
В любом случае должно подтверждаться правило, что момент устойчивости сильнее опрокидывающего момента. Проверкой устанавливается следующая закономерность:
Способы подключения асинхронного двигателя
Как мы уже с вами узнали, асинхронный двигатель имеет три обмотки. На современный манер они обозначаются английскими буквами U,V,W. Начало каждой обмотки обозначается цифрой “1”, а конец обмотки цифрой “2”.
Поэтому, есть два способа соединения обмоток: звездой и треугольником.
Способ соединения “звезда”
Способ «звезда» подразумевает соединение одинаковых выводов обмоток (начала или концы обмоток) в одну (нулевую) точку.
В клеммной коробке двигателя это соединение будет иметь такой вид.
Как вы видите, в этом случае с помощью железных пластин мы закоротили концы обмоток в одну общую точку.
Соединение таким способом практикуется, в основном, на двигателях промышленного назначения. Часто завод-изготовитель, для таких двигателей, которые не будут реализовываться через розничную сеть, производит соединение «звездой» уже внутри статора. На корпус двигателя выводится не 6 клемм, а 3. В этом случае достаточно просто подать трехфазное напряжение. Поэтому, помните: если вы увидите, что у асинхронного двигателя только 3 провода, это значит, что его обмотки уже соединены по типу “звезда”.
Способ соединения “треугольник”
Соединение «треугольник» выполняется по схеме: конец первой обмотки соединяется с началом второй, конец второй – с началом третьей, а конец третьей – с началом первой. В места соединения подается питающее трехфазное напряжение.
В двигателе это будет выглядеть вот таким образом.
Методы
Общие рекомендации по размерам и заглублению могут оказаться полезными, но гораздо правильнее будет ориентироваться на результаты расчетов профессионального уровня. Большое значение при их выполнении имеет методика послойного суммирования. Она позволяет уверенно оценивать осадку основания, покоящегося на природной подложке из песка или грунта. Важно: существуют отдельные ограничения для применимости такого метода, но разобраться в этом глубоко смогут только специалисты.
Необходимая формула включает:
- безразмерный коэффициент;
- среднестатистическое напряжение элементарного грунтового слоя под действием внешних нагрузок;
- модуль повреждения почвенной массы при первичной загрузке;
- он же при вторичной загрузке;
- средневзвешенное напряжение элементарного грунтового слоя под собственной массой, извлеченной при подготовке котлована почвы.
Нижнюю линию сжимаемого массива определяют теперь по полному напряжению, а не по дополнительному воздействию, как это рекомендуют строительные нормы и правила. В ходе лабораторных испытаний свойств почвы рассматривается сейчас обязательно нагружение с паузой (временным освобождением). Сначала основание под фундаментом условно разбивается на слои идентичной толщины. Затем измеряют напряжение на стыках этих слоев (строго под серединой подошвы).
Устройство асинхронного однофазного электродвигателя
Как и любой другой электрический двигатель, асинхронный однофазный двигатель состоит из двух основных частей. А именно, из ротора и статора. Статор является неподвижной частью асинхронного двигателя . Именно на контактные выводы обмотки статора подаётся питание однофазным переменным током с напряжением 220 вольт. А ротор — это подвижная (вращающаяся) часть асинхронного двигателя. Через ротор, посредством вала, двигатель соединяется с какой-нибудь механической нагрузкой. Как ротор, так и статор электродвигателя, оба состоят из стального сердечника и обмотки. Однофазный асинхронный электродвигатель по конструкции похож на трехфазный асинхронный двигатель. Основное отличие заключается в устройстве обмотки статора двигателя.
Статор и короткозамкнутый ротор асинхронного электродвигателя
Короткозамкнутый ротор асинхронного однофазного электродвигателя
В подавляющем большинстве случаев, бытовые асинхронные однофазные электродвигатели имеют короткозамкнутый ротор. Короткозамкнутый ротор обычно изготавливают нижеописанным способом.
Сердечник ротора спрессовывают из множества круглых листов электротехнической стали. Каждый стальной лист изолируют друг от друга слоем лака. Такой способ изготовления сердечника применяется для уменьшения потерь электроэнергии. Если бы сердечники изготавливались из единого куска стали, то были бы большие потери на образование вихревых токов. То есть, электродвигатель потреблял бы больше электроэнергии, чем ему практически нужно для выполнения работы. А также ротор перегревался бы даже при небольших нагрузках. Однако, все же существует разновидность асинхронных двигателей с массивным ротором.
Короткозамкнутый ротор асинхронного электродвигателя
В итоге, получается конструкция цилиндрической формы с выполненными в ней пазами. Пазы параллельны друг другу. Однако, они не параллельны оси самого ротора. Чаще всего они имеют некоторый перекос направления относительно этой оси. Этот перекос уменьшает высшие гармонические ЭДС, вызванные пульсациями магнитного потока. Такие пульсации происходят из-за того, что магнитное сопротивление зубцов статора и ротора, образованных благодаря пазам, намного ниже магнитного сопротивления обмотки, которая находится в пазах.
То есть, часть ротора, на которой находится обмотка, имеет неоднородную структуру по своей окружности. Сначала сталь, потом алюминий, затем опять сталь и так далее. Потому и магнитное сопротивление на разных участках этой окружности очень отличается. А отсюда пульсации магнитного потока. А скосы позволяют свести к минимуму различие магнитных сопротивлений. И соответственно уменьшатся пульсации. Проще говоря, благодаря такому направлению пазов, работа асинхронного двигателя становится более плавной и менее шумной. К примеру, работа электродвигателя с ротором, у которого нет такого скоса у пазов для обмотки, будет сопровождаться сильным гудением или свистом.
В пазах находятся стержни из сплава алюминия. При изготовлении ротора алюминий впрессовывается или заливается в пазы. С двух сторон цилиндра ротора стержни соединяются (замыкаются) алюминиевыми кольцами. На кольцах могут располагаться лопасти для охлаждения электродвигателя. Алюминиевые стержни и кольца представляют собой обмотку ротора. Такой вид обмотки обычно называется — «беличья клетка». Однако, по форме она скорее напоминает колесо, в котором бегают белки для соблюдения моциона. Обмотка типа «беличья клетка» может иметь некоторые разновидности в своем устройстве.
Короткозамкнутый ротор и его обмотка типа «беличья клетка»
Статор асинхронного однофазного электродвигателя
Сердечник статора также набран из отдельных стальных листов. По той же причине, что и сердечник ротора. И также на сердечнике статора имеются пазы. В пазах расположена обмотка статора. Но в отличии от обмотки ротора, эта обмотка намотана в пазах медной обмоточной проволокой. Питание переменным током напряжением 220 вольт подключают к обмотке статора. А то, каким образом подключают питание, зависит от особенностей принципа работы однофазного асинхронного электродвигателя с короткозамкнутым ротором.
- Рекуперативное торможение
- Правосторонее и левосторонее движение
- Причины возникновения сил трения покоя, скольжения, качения и трения в текучих субстанциях
- Топ 10 наиболее популярных товаров для автомобиля с aliexpress и купоны площадки
- Что такое парашют и сила сопротивления воздуха?
- Размеры гаража: как выбрать оптимальные параметры
- Как натянуть или заменить ремень на стиральной машине
- Жидкость
- Навес на дачу для машины: виды, материалы, изготовление
- Перевозка животных на машине
Теория расчета фундаментов
Расчет фундамента для любого здания начинается выбора типа будущего фундамента. Для того чтобы выбрать тип фундамента необходимо определить геометрию будущего фундамента, которая зависит от технологических свойств используемых материалов.
Для определения геометрии и размеров будущего фундамента, нужно выполнить следующее:
- Рассчитать глубину заложения основания фундамента, на которую влияет:
- расчетная глубина промерзания грунта;
- технологические решения;
- конструктивные решения (наличие подвала, наличие отдельных фундаментов под колонами, сборные или монолитные фундаменты и пр.);
- геологические изыскания (характер грунтов: пучинистость, просадочность и пр.);
- гидрогеологические изыскания (уровень грунтовых вод);
- массивность будущего здания (количество этажей);
- сейсмичность района постройки (в сейсмичных районах принято заглублять до 10% от всего здания исходя из государственных нормативов и опыта проектирования);
- наличие вблизи будущего здания других зданий и сооружений;
- наличие подземных коммуникаций и пр.;
- рельеф местности.
- Определить размеры фундамента:
- рассчитать нагрузки на фундамент и на основание под ним;
- использовать предварительную площадь фундамента, используя для этого справочник по строительным правилам.
- Рассчитать прочность материала фундамента:
- рассчитать будущий фундамент на продавливание.
- Рассчитать основание:
- рассчитать песчаную подушку (для искусственного основания);
- рассчитать глубину уплотнения.
- Рассчитать конечную осадку фундамента:
- рассчитать величину конечной осадки фундамента и сравнить ее с величиной абсолютной осадки;
- рассчитать осадку фундаментов расположенных рядом;
- рассчитать абсолютные осадки;
- рассчитать средние осадки;
- рассчитать средние осадки.
- Рассчитать устойчивость фундамента:
- рассчитать фундамент на опрокидывание (расчет величины отрыва подошвы фундамента);
- рассчитать фундамент на сдвиг;
- рассчитать фундамент на выгиб, крен, закручивание, относительный прогиб и относительную разность осадок.
Источник