Угловое давление под подошвой фундамента

Проверка краевых давлений под подошвой фундамента

Для центрально нагруженных фундаментов среднее фактическое давление на основание под подошвой фундамента должно удовлетворять условию:

(3.16.)

,

где N — сумма всех вертикальных расчетных нагрузок, действующих на фундамент от сооружения, кН;

Qф — расчетное значение нагрузки от собственного веса фундамента, кН;

F — площадь фундамента, м 2 .

Для внецентренно нагруженного фундамента давления на грунт у края его подошвы при нагрузках, принимаемых для расчета основами по деформациям, определяются по формуле:

(3.17.)

,

где N, Qф, F — то же, что в формуле (3.16);

М — расчетное значение изгибающего момента, действующего вдоль каждой оси фундамента от внецентренного приложения нагрузки на уровне обрезов фундамента, кНм;

W — момент сопротивления площади подошвы фундамента, м 3 , равный:

(3.18.)

а) для квадратных, в плане фундаментов:

б) для круглых и многоугольных:

(3.19.)

(3.20.)

в) кольцевых:

(3.21.)

г) для прямоугольных в плане фундаментов:

или

в зависимости от направления действия моментов.

(3.22.)

Среднее давление по подошве внецентренно нагруженного фундамента:

(3.23.)

При этом краевое давление при действии изгибающего момента вдоль каждой оси фундамента:

При учете влияния соседних фундаментов на проектируемый, величина наибольшего краевого давления в угловой точке не должна превышать 1,5R, где R — расчетное давление на основание.

Если условия (3.16) или (3.22) и (3.23) удовлетворяются, то размеры фундамента в плане оставляют принятыми ранее для третьего приближения (b, l, d). В других случаях необходимо изменить размеры подошвы фундамента, что можно сделать путем постепенного подбора или аналитическим способом, решая уравнения относительно размеров сторон в плане, а именно:

Источник

5.5.3. Определение основных размеров фундаментов (ч. 3)

Б. ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ

Размеры внецентренно нагруженных фундаментов определяются исходя из условий:

где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; р c max — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.

Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле

где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м 2 ; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м 4 .

Для прямоугольных фундаментов формула (5.53) приводится к виду

где Wx — момент сопротивления подошвы, м 3 ; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле

или для прямоугольной подошвы

где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.

Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.

Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:

εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;

εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.

Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε > 1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.

В последнем случае максимальное краевое давление определяется по формуле

где b — ширина подошвы фундамента; l0 = l /2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).

Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.

Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле

где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.

Пример 5.11. Определить размеры фундамента для здания гибкой конструктивной схемы без подвала, если вертикальная нагрузка на верхний обрез фундамента N = 10 МН, момент M = 8 МН·м, глубина заложения d = 2 м. Грунт — песок средней крупности со следующими характеристиками, полученными по испытаниям: е = 0,52; φII = 37°; cII = 4 кПа; γ = 19,2 кН/м 3 . Предельное значение относительного эксцентриситета εu = е/l = 1/6.

Решение. По табл. 5.13 R0 = 500 кПа. Предварительные размеры подошвы фундамента определим исходя из требуемой площади:

м 2 .

Принимаем b · l = 4,2 · 5,4 м ( A = 22,68 м 2 ).

Расчетное сопротивление грунта по формуле (5.29) R = 752 кПа. Максимальное давление под подошвой

кПа R = 900 кПа.

Эксцентриситет вертикальной нагрузки

м,

Таким образом, принятые размеры фундамента удовлетворяют условиям, ограничивающим краевое давление и относительный эксцентриситет нагрузки.

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Источник

Какое давление на грунт принимать при расчете фундаментной плиты по первой группе предельных состояний

При расчете по первой группе предельных состояний какая величина должна быть меньше расчетного сопротивления грунта:

— среднее давление под подошвой фундаментной плиты (вся нагрузка по Z деленная на площадь плиты)
— максимальное давление на грунт по изополям Scad’а?

Заранее, очень благодарен!

19.12.2015, 18:39 #2

19.12.2015, 19:09 #3

SergeyKonstr, не разное оно, а вроде только такое
СП 50-101-2004 5.5.8. При расчете деформаций основания с использованием расчетной схемы, указанной в 5.5.7, среднее давление под подошвой фундамента р не должно превышать расчетное сопротивление грунта основания R, определяемое по формуле:
R=y(c1)*y(c2)/k*[M(y)*k(z)*b*y(II)+M(q)*d(1)*y(‘)(II)+[M(q)-1]*d(b)* y(‘)(II)+M(c)*c(II)]

12 мин. ——
Почему берется среднее давление? — ветер подул, здание наклонилось и встало «на цыпочки» фундаментной плитой , край плиты начинает более интенсивно давить на грунт. Далее грунт под краем плиты текет и здание опрокидывается. Если брать среднее по палате давление то вышеописанное не происходит. Мое интуитивное мнение, прошу закидать томатами

19.12.2015, 19:33 1 | #4

Это вторая группа предельных состояний.

19.12.2015, 21:45 #5

Т. е. для фундаментой плиты нужно производить следующие расчеты

а) по первой группе для нескальных диспестных грунтов

СП 22.13330.2011 5.7.11 Вертикальную составляющую силы предельного сопротивления Nu, кН,
основания, сложенного дисперсными грунтами в стабилизированном состоянии,
допускается определять по формуле (5.32), если фундамент имеет плоскую подошву и
грунты основания ниже подошвы однородны до глубины не менее ее ширины, а в
случае различной вертикальной пригрузки с разных сторон фундамента интенсивность
большей из них не превышает 0,5R (R – расчетное сопротивление грунта основания,
определяемое в соответствии с 5.6.7 5.6.25)

б) по второй группе, чтобы давление на грунт было менее R (давление, при котором глубина развития пл. деформаций Z=b/4). Хотя на форуме, есть люди, которые считают что «Z=b/4 это глубина разрешенная СНиП развития пл. деформаций для небольших фундаментов.Для больших фундаментов это правило не работает»

в) крен плиты, осадку

г) расчет армирования

Во всех примерах, которые я видел (штук 5) люди просто считают крен, осадку и армирование. Остальное опускают. Странно как-то

Источник

5.5.4. Расчет деформаций основания (ч. 1)

А. ОСАДКИ ФУНДАМЕНТОВ

Определение осадки методом послойного суммирования. В методе послойного суммирования приняты следующие допущения:

  • – осадка основания вызывается дополнительным давлением р0 , равным полному давлению под подошвой фундамента р за вычетом вертикального нормального напряжения от собственного веса грунта на уровне подошвы фундамента: р0 = р – σzg,0 (при планировке срезкой принимается σzg,0 = γ´d , при отсутствии планировки и планировке подсыпкой σzg,0 = γ´dn , где γ´ — удельный вес грунта, расположенного выше подошвы; d и dn — глубина заложения фундамента от уровня планировки и природного рельефа);
  • – распределение по глубине дополнительных вертикальных нормальных напряжений σzp от внешнего давления р0 принимается по теории линейно-деформируемой среды как в однородном основании (см. п. 5.2);
  • – при подсчете осадок основание делится на «элементарные» слои, сжатие которых определяется от дополнительного вертикального нормального напряжения σzp , действующего по оси фундамента в середине рассматриваемого слоя;
  • – сжимаемая толща основания ограничивается глубиной z = Нс , где выполняется условие

Если найденная по условию (5.59) нижняя граница сжимаемой толщи находится в слое грунта с модулем деформации Е z = Hc , нижняя граница сжимаемой толщи определяется исходя из условия σzp = 0,1σzg .

Осадка основания s методом послойного суммирования определяется по формуле

где β — безразмерный коэффициент, равный 0,8; σzp,i — среднее значение дополнительного вертикального нормального напряжения в i -м слое грунта, равное полусумме указанных напряжений на верхней zi-1 и нижней zi границах слоя по вертикали, проходящей через центр подошвы фундамента; hi и Еi — соответственно толщина и модуль деформации i -го слоя грунта; n — число слоев, на которое разбита сжимаемая толща основания.

При этом распределение вертикальных нормальных напряжений по глубине основания принимается в соответствии со схемой, приведенной на рис. 5.26.

Дополнительные вертикальные нормальные напряжения по вертикали, проходящей через центр рассматриваемого фундамента, на глубине z от его подошвы определяются:

σzp — от дополнительного давления р0 под подошвой рассчитываемого фундамента [см. формулу (5.12)]; σzp,A — от дополнительного давления р0j под подошвой j -го влияющего фундамента методом угловых точек по формуле (5.18).

Суммарное дополнительное напряжение по оси рассчитываемого фундамента с учетом влияния нагрузок от соседних фундаментов определяется по формуле (5.19).

Пример 5.12. Рассчитать осадку фундамента Ф-1 здания с гибкой конструктивной схемой с учетом влияния нагрузки на фундамент Ф-2 по условиям примера 5.2 (см. рис. 5.11) при следующих данных. С поверхности до глубины h + h1 = 6 м залегает песок пылеватый со следующими характеристиками, принятыми по справочным таблицам (см. гл. 1): γs = 26,6 кН/м 3 ; γ = 17,8 кН/м 3 ; ω = 0,14; е = 0,67; сII = 4 кПа; φII = 30°; E = 18 000 кПа. Ниже залегает песок мелкий с характеристиками: γs = 26,6 кН/м 3 ; γ = 19,9 кН/м 3 ; ω = 0,21; е = 0,62; сII = 2 кПа; φII = 32°; E = 28 000 кПа. Уровень подземных вод находится на глубине 6,8 м от поверхности. Суммарная нагрузка на основание от каждого фундамента (с учетом его веса) N = 5,4 МН.

Решение. По формуле (5.21) удельный вес песка мелкого с учетом взвешивающего действия воды

γsb = (26,6 – 10)/(1 + 0,62) = 10,2 кН/м 3 .

По табл. 5.11 находим: γc1 = 1,2 и γc2 = 1. По табл. 5.12 при φII = 30° находим: Mγ = 1,15; Мq = 5,59; Мc = 7,95. Поскольку характеристики грунта приняты по таблицам, k = 1,1.

По формуле (5.29) получаем:

кПа.

Среднее давление под подошвой

р = 5400/4 2 = 338 кПа R = 341 кПа;

дополнительное давление на основание

Дополнительные вертикальные нормальные напряжения в основании фундаментов Ф-1 и Ф-2 подсчитаны в примере 5.2, приведены в табл. 5.6 и показаны на рис. 5.11. Дополняем табл. 5.6 подсчетом напряжений от собственного веса грунтов σzg для определения нижней границы сжимаемой толщи (табл. 5.16).

Из табл. 5.16 видно, что нижняя граница сжимаемой толщи под фундаментом Ф-1 находится на глубине z1 = 8,0 м (при учете нагрузки только на этот фундамент) и на глубине z2 = 8,8 м (при учете влияния фундамента Ф-2).

ТАБЛИЦА 5.16. К ПРИМЕРУ 5.12
z , м σzp1 σzp2 σzp σzg 0,2 σzg E
0 300 0 300 36 7 18 000
0,8 288 0 288 50 10
1,6 240 0 240 64 13
2,4 182 1 183 78 16
3,2 135 2 137 93 19
4,0 101 3 104 107 21
4,8 77 4 81 123 25 28 000
5,6 60 5 65 131 26
6,4 48 6 54 139 28
7,2 39 6 45 147 29
8,0 32 7 39 156 31
8,8 27 7 34 164 33

Примечание. Значения напряжений и модуля даны в кПа.

Определяем осадку фундамента Ф-1 по формуле (5.60):

без учета влияния Ф-2

0,033 м = 3,3 см.

с учетом влияния Ф-2

0,035 м = 3,5 см.

Определение осадки основания с использованием схемы линейно-деформируемого слоя.

Средняя осадка фундамента на слое конечной толщины (рис. 5.27) определяется по формуле [4]

где р — среднее давление под подошвой фундамента; b — ширина прямоугольного или диаметр круглого фундамента; kc и km — коэффициенты, принимаемые по табл. 5.17 и 5.18; n — число слоев, различающихся по сжимаемости в пределах расчетной толщины слоя H ; ki и ki-1 — коэффициенты, определяемые по табл. 5.19 в зависимости от формы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, на которой расположены подошвы и кровля i -го слоя (соответственно ζi = 2zi/b и ζi-1 = 2zi-1/b) ; Ei — модуль деформации i -го слоя грунта.

Формула (5.61) служит для определения средней осадки основания, загруженного равномерно распределенной по ограниченной площади нагрузкой. Эту формулу допускается применять для определения осадки жестких фундаментов.

ТАБЛИЦА 5.17. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА kc

Относительная толщина слоя ζ´ = 2H/b kс
0 ζ´ ≤ 0,5 1,5
0,5 ζ´ ≤ l 1,4
1 ζ´ ≤ 2 1,3
2 ζ´ ≤ 3 1,2
3 ζ´ ≤ 5 1,1
ζ´ > 5 1,0

ТАБЛИЦА 5.18. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА km

Ширина фундамента, м km при среднем значении Е , МПа
b > 10
10 ≤ b ≤ 15
b > 15
1
1
1
1
1,35
1,5

Расчетная толщина линейно-деформируемого слоя H (см. рис. 6.27) принимается до кровли малосжимаемого грунта (см. п. 5.1), а при ширине (диаметре) фундамента b > 10 м и среднем значении модуля деформации грунтов основания E > 10 МПа вычисляется по формуле

где H0 и ψ — принимаются соответственно равными для оснований, сложенных пылевато-глинистыми грунтами 9 м и 0,15, а сложенных песчаными грунтами 6 м и 0,1; kp — коэффициент, принимаемый; kp = 0,8 при среднем давлении под подошвой фундамента p = 100 кПа; kp = 1,2 при р = 500 кПа; при промежуточных значениях — по интерполяции.

Если основание сложено и пылевато-глинистыми, и песчаными грунтами, значение Н определяется по формуле

где Нs — толщина слоя, вычисленная по формуле (5.62) в предположении, что основание сложено только песчаными грунтами; hci — суммарная толщина слоев пылевато-глинистых грунтов в пределах от подошвы фундамента до глубины Hci равной значению Н , вычисленному по формуле (5.62) в предположении, что основание сложено только пылевато-глинистыми грунтами.

ТАБЛИЦА 5.19. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА k

ζ = 2z/b k для фундаментов
круглых прямоугольных с соотношением сторон η = l/b ленточных ( η ≥ 10)
1 1,4 1,8 2,4 3,2 5
0,0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,4 0,090 0,100 0,100 0,100 0,100 0,100 0,100 0,104
0,8 0,179 0,200 0,200 0,200 0,200 0,200 0,200 0,208
1,2 0,266 0,299 0,300 0,300 0,300 0,300 0,300 0,311
1,6 0,348 0,380 0,394 0,397 0,397 0,397 0,397 0,412
2,0 0,411 0,446 0,472 0,482 0,486 0,486 0,486 0,511
2,4 0,461 0,499 0,538 0,556 0,565 0,567 0,567 0,605
2,8 0,501 0,542 0,592 0,618 0,635 0,640 0,640 0,687
3,2 0,532 0,577 0,637 0,671 0,696 0,707 0,709 0,763
3,6 0,558 0,606 0,676 0,717 0,750 0,768 0,772 0,831
4,0 0,579 0,630 0,708 0,756 0,796 0,820 0,830 0,892
4,4 0,596 0,650 0,735 0,789 0,837 0,867 0,883 0,949
4,8 0,611 0,668 0,759 0,819 0,873 0,908 0,932 1,001
5,2 0,624 0,683 0,780 0,834 0,904 0,948 0,977 1,050
5,6 0,635 0,697 0,798 0,867 0,933 0,981 1,018 1,095
6,0 0,645 0,708 0,814 0,887 0,958 1,011 1,056 1,138
6,4 0,653 0,719 0,828 0,904 0,980 1,031 1,090 1,178
6,8 0,661 0,728 0,841 0,920 1,000 1,065 1,122 1,215
7,2 0,668 0,736 0,852 0,935 1,019 1,088 1,152 1,251
7,6 0,674 0,744 0,863 0,948 1,036 1,109 1,180 1,285
8,0 0,679 0,751 0,872 0,960 1,051 1,128 1,205 1,316
8,4 0,684 0,757 0,881 0,970 1,065 1,146 1,229 1,347
8,8 0,689 0,762 0,888 0,980 1,078 1,162 1,251 1,376
9,2 0,693 0,768 0,896 0,989 1,089 1,178 1,272 1,404
9,6 0,697 0,772 0,902 0,998 1,100 1,192 1,291 1,431
10,0 0,700 0,777 0,908 1,005 1,110 1,205 1,309 1,456
11,0 0,705 0,786 0,922 1,022 1,132 1,233 1,349 1,506
12,0 0,710 0,794 0,933 1,037 1,151 1,257 1,384 1,550

Примечание. При промежуточных значениях ζ и η коэффициент k определяется по интерполяции.

Значение Н , найденное по формулам (5.62) и (5.63), должно быть увеличено на толщину слоя грунта с модулем деформации E H и толщина его не превышает 0,2 H . При большей толщине слоя такого грунта, а также если лежащие выше слои имеют модуль деформации E р = 0,3 МПа, если плита опирается на слой песка толщиной 5 м с модулем деформации E = 30 МПа, который подстилается моренным суглинком, имеющим Е = 40 МПа.

Решение. Расчетную толщину слои определяем но формуле (5.62) для двух случаев: основание сложено только песчаными и только пылевато-глинистыми грунтами (при р = 0,3 МПа коэффициент kр = 1):

Тогда по формуле (5.63)

H = 8 + 7/3 = 10,3 м ≈ 10 м.

При ζ´ = 2 · 10/20 = 1 по табл. 5.17 kc = 1,4; при Е > 10 МПа и b > 15 м по табл. 5.18 коэффициент km = 1,5.

Определяем коэффициенты ki по табл. 5.19, учитывая, что η = 100/20 = 5:

Тогда по формуле (5.61)

м = 4 см.

Осадки центра, середин сторон и угловых точек прямоугольной площади размером b×l при действии на нее равномерного давления р определяются по формуле [2]:

где E — модуль деформации грунта основания, принимаемый средним в пределах сжимаемой толщи; k´ = k0 коэффициент, принимаемый по табл. 5.20 для центра прямоугольника; k´ = k1 — то же, для середины большей стороны; k´ = k2 — то же, для середины меньшей стороны; k´ = k3 — то же, для угловой точки.

Осадки поверхности основания при действии на него равномерного давления р по круглой площадке радиусом r на расстоянии R от центра этой площадки также можно определить по формуле (5.64), в которой коэффициент k´ = kr принимается по табл. 5.21 [2]. Указанным способом допускается определять осадки поверхности основания за пределами жесткого круглого фундамента.

Влияние на осадку рассчитываемого фундамента других фундаментов, нагрузок на полы и т.п. может быть оценено по формуле (5.64) с использованием схемы фиктивных фундаментов аналогично определению напряжений в основании методом угловых точек либо с помощью ЭВМ по стандартной программе. Дополнительную осадку рассчитываемого фундамента от влияния других фундаментов допускается принимать равной дополнительной осадке его центра.

ТАБЛИЦА 5.20. ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ k0, k1, k2, k3

η ζ´ = 2H/b k0 k1 k2 k3 η ζ´ = 2H/b k0 k1 k2 k3
1 0,2
0,5
1
2
3
5
7
10
0,091
0,236
0,464
0,701
0,801
0,892
0,928
0,955
0,045
0,109
0,236
0,436
0,482
0,564
0,601
0,628
0,045
0,109
0,236
0,436
0,482
0,564
0,601
0,628
0,024
0,056
0,115
0,231
0,305
0,380
0,416
0,444
3 0,2
0,5
1
2
3
5
7
10
0,091
0,227
0,464
0,801
1,019
1,238
1,338
1,420
0,045
0,109
0,227
0,464
0,655
0,855
0,955
1,037
0,045
0,107
0,225
0,400
0,510
0,656
0,742
0,815
0,024
0,056
0,115
0,231
0,325
0,460
0,545
0,617
1,5 0,2
0,5
1
2
3
5
7
10
0,091
0,227
0,464
0,773
0,910
1,037
1,092
1,137
0,045
0,109
0,236
0,446
0,564
0,682
0,737
0,783
0,045
0,108
0,231
0,404
0,508
0,617
0,669
0,712
0,024
0,056
0,115
0,231
0,323
0,426
0,478
0,518
5 0,2
0,5
1
2
3
5
7
10
0,091
0,227
0,454
0,801
1,028
1,310
1,456
1,592
0,045
0,109
0,227
0,464
0,655
0,919
1,065
1,192
0,045
0,107
0,225
0,400
0,511
0,656
0,752
0,852
0,024
0,056
0,115
0,231
0,326
0,462
0,555
0,652
2 0,2
0,5
1
2
3
5
7
10
0,091
0,227
0,464
0,792
0,974
1,128
1,201
1,265
0,045
0,109
0,227
0,464
0,610
0,755
0,837
0,883
0,044
0,107
0,225
0,403
0,514
0,641
0,708
0,762
0,024
0,056
0,115
0,231
0,324
0,448
0,512
0,565
10 0,2
0,5
1
2
3
5
7
10
0,091
0,227
0,464
0,801
1,028
1,319
1,492
1,702
0,045
0,109
0,227
0,464
0,655
0,928
1,110
1,310
0,045
0,107
0,225
0,400
0,511
0,658
0,756
0,858
0,024
0,056
0,115
0,231
0,326
0,463
0,558
0,659

ТАБЛИЦА 5.21. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА kr

ζ´ = H/r kr при ρ = R/r
0 0,25 0,5 0,75 1 1,25 1,5 2 2,5 3 4 5
0 0 0 0 0 0 0 0 0 0 0 0 0
0,25 0,12 0,12 0,12 0,12 0,05 0 0 0 0 0 0 0
0,5 0,24 0,24 0,23 0,22 0,11 0,01 0 0 0 0 0 0
0,75 0,35 0,35 0,34 0,29 0,16 0,03 0,01 0 0 0 0 0
1 0,45 0,44 0,42 0,35 0,21 0,07 0,02 0 0 0 0 0
1,5 0,58 0,57 0,53 0,45 0,28 0,13 0,07 0,02 0 0 0 0
2 0,65 0,64 0,60 0,52 0,34 0,17 0,10 0,04 0,01 0 0 0
3 0,74 0,73 0,68 0,59 0,41 0,23 0,16 0,08 0,04 0,02 0 0
5 0,81 0,79 0,74 0,66 0,47 0,30 0,22 0,13 0,09 0,06 0,02 0,01
7 0,84 0,82 0,77 0,69 0,50 0,33 0,24 0,15 0,11 0,08 0,04 0,02
10 0,85 0,83 0,79 0,71 0,52 0,35 0,27 0,18 0,13 0,10 0,06 0,04
0,91 0,89 0,84 0,76 0,58 0,40 0,32 0,23 0,18 0,15 0,11 0,09

ТАБЛИЦА 5.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ω

Форма загруженной площади η ω для определения
осадки равномерно загруженной площади осадки абсолютно жесткого фундамента ωconst
в угловой точке ωc в центре ω0 в средней ωm
Прямоугольная 1 0,5 ω0 1,12 0,95 0,88
1,5 1,36 1,15 1,08
2 1,53 1,30 1,22
3 1,78 1,53 1,44
4 1,96 1,70 1,61
5 2,10 1,83 1,72
6 2,23 1,96 1,83
7 2,33 2,04 1,92
8 2,42 2,12 2,00
9 2,49 2.19 2,06
10 2,53 2,25 2,12
Круглая 0,64 1,00 0,85 0,79

Определение осадки путем непосредственного применения теории линейно-деформируемой среды. Для предварительной оценки осадок фундаментов допускается пользоваться формулой

где ω — коэффициент, принимаемый по табл. 5.22; v — коэффициент Пуассона.

Во всех случаях формула (5.65) приводит к преувеличению расчетных осадок (по сравнению с методами, рекомендуемыми нормами). Достаточно удовлетворительные результаты эта формула дает при ширине фундамента b η = l/b

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Источник

Читайте также:  Зачем плита под фундаментом
Оцените статью