- Устройство оснований и фундаментов для установки станочного оборудования
- Устройство оснований и фундаментов для установки станочного оборудования
- Правильная установка станка
- 1.ОБЩИЕ СВЕДЕНИЯ
- ПРИСПОСОБЛЕНИЯ ДЛЯ УСТАНОВКИ И ВЫВЕРКИ СТАНКОВ
- УСТАНОВКА СТАНКОВ НА ФУНДАМЕНТАХ ПЕРВОЙ ГРУППЫ
- УСТАНОВКА СТАНКОВ НА ФУНДАМЕНТАХ ВТОРОЙ ГРУППЫ
Устройство оснований и фундаментов для установки станочного оборудования
Еще одна публикация из учебника А.М. Гаврилина, В.И. Сотникова, А.Г. Схиртладзе и Г.А. Харламова «Металлорежущие станки» с полезной информацией о станках с ЧПУ. Сегодня разберем особенности в устройстве оснований и фундаментов для установки станочного оборудования.
Устройство оснований и фундаментов для установки станочного оборудования
Для защиты от внешних вибраций станки следует устанавливать на фундаменты или на специальные виброизоляторы.
Документы, высылаемые заводом-изготовителем вместе со станком, в большинстве случаев содержат указания по устройству фундаментов и их виброизоляции. Виброизоляция станков может быть также обеспечена установкой их на виброопоры или на резиновые прокладки без устройства фундамента.
При выборе типа основания для любого станка должны быть учтены следующие основные факторы: класс точности станка, жесткость конструкции, масса станка, характер нагрузок при работе.
Станки класса точности С устанавливаются на массивные бетонные фундаменты, вывешенные на пружинах с демпферами или резиновых ковриках (рис 17.1 д, е) и боковой виброизоляцией (пробковая крошка, шлак, шлаковата, отходы кожевенно-обувной промышленности) .
Станки класса точности А устанавливают на бетонных фундаментах с боковой виброизоляцией из тех же материалов, которые используются для фундаментов станков класса точности С.
Рис. 17.1. Фундаменты под металлорежущие станки:
а — общая плита цеха; б — ленточный; в — обычного типа; г — свайный; д — на резиновых ковриках; е — на пружинах
Станки класса точности В, имеющие нежесткие станины, а также крупные и тяжелые станки независимо от жесткости станин устанавливаются на бетонные фундаменты с боковой виброизоляцией, аналогично станкам класса точности А.
Станки класса точности П, имеющие нежесткие станины, и крупные и тяжелые станки независимо от жесткости станин устанавливаются на бетонные фундаменты без боковой виброизоляции. На такие же фундаменты устанавливают крупные и тяжелые станки класса точности Н (рис. 17.1, в, г).
Станки классов точности В, П и Н легкой и средней массы, не имеющие резко реверсирующих узлов, устанавливают на виброопоры (рис. 17.2, д). Такие же станки с быстро реверсирующими узлами устанавливают на жесткие (клиновые) опоры (рис. 17.2, в, рис. 17.3)
Рис. 17.2. Способы установки станка на фундамент:
а — с подливкой опорной поверхности станины цементным раствором и креплением фундаментными болтами; б — с подливкой без крепления болтами; в, г — на регулируемых жестких опорах; д — на упругих опораx
Рис. 17.3. Опорные башмаки:
а — для установки станка без закрепления фундаментными болтами; б — для установки станка с закреплением фундаментными болтами
При устройстве фундамента из бетона станок можно монтировать через семь дней после укладки бетона, а пуск станка разрешается на 22-й день.
От разрушения маслами фундамент железнят цементным раствором с жидким стеклом.
Фундамент должен обеспечить:
- распределение на грунт сосредоточенной силы веса станка;
- увеличение жесткости станины станка;
- необходимую устойчивость станка при работе за счет понижения центра тяжести;
- увеличение суммарной массы станка и фундамента, что приводит к уменьшению амплитуды вибраций;
- защиту станка от вибраций рядом стоящего оборудования. Фундаменты должны быть компактными, сравнительно небольших размеров и простой формы в очертаниях, удобными для размещения и закрепления станка.
Нужно стремиться к тому, чтобы общий центр тяжести станка и фундамента находились на одной вертикали и располагались в центре площади основания фундамента. Допустимое смещение центров тяжести не должно превышать 3. 5 % от ширины фундамента в зависимости от типа грунта.
Высота фундамента делается как можно меньше, но ширину желательно увеличить (уменьшается опрокидывающий момент). Обязательны боковые зазоры. Подошву всего фундамента желательно расположить на одной глубине. Для влажных грунтов делается подготовка из щебня, крупного гравия.
Площадь подошвы фундамента:
где Q — нагрузка на грунт (вес станка, фундамента, детали); R — допустимое давление на грунт.
Допустимое давление на грунт определяют по формуле
где α — коэффициент, учитывающий характер динамических нагрузок, возникающих при работе технологического оборудования (формовочные машины — α = 0,3 . 0,5 ; молоты — α = 0,4; металлорежущие станки — α = 0,8. 1,0); RH — нормативное удельное давление для грунта (супеси — R н = 2. 3 кг/см 2 , суглинки — RH = 1. 3 кг/см 2 , глина — RH = 1 . 6 кг/см 2 , песок — R Н = 1,5. 3,5 кг/см 2 ).
Вес фундамента Q Ф определяют исходя из веса станка:
где КФ — коэффициент, учитывающий вид нагрузки технологического оборудования (при статической нагрузке — К Ф = 0,6. 1,5, при значительной динамической нагрузке — К Ф = 2. 3); Q СТ — вес станка.
Высота фундамента берется из расчета веса фундамента и площади его основания или с учетом длины заделки фундаментных болтов (рис. 17.4).
Рис. 17.4. Фундаментные болты:
а, б— изогнутые; в — с анкерной плитой
Материалы для фундаментов: бетон, железобетон (реже бутобетон и кирпич) из портландцемента марок 200. 500 (схватывание бетона от 45 мин до 12 ч).
Для ремонта фундаментов используют портландцемент марок 500 и 600. Марка бетона соответствует пределу прочности при сжатии бетонных кубиков 200 x 200 x 200 мм на 28-й день сушки, при температуре 18. 22°С и относительной влажности воздуха 90. 100%.
Ориентировочно глубина фундамента h принимается в зависимости от длины фундамента L :
- для токарных, горизонтально-протяжных станков
- зубообрабатывающих, карусельных, расточных станков
- шлифовальных станков
- продольно-фрезерных и строгальных станков
- поперечно-строгальных, радиально-сверлильных, вертикальнопротяжных и долбежных станков h = 1,0. 2,0 L.
Расстояние от края колодца для анкеров до края фундамента не менее 120 мм, от дна колодца до дна фундамента минимум 100. 150 мм.
Источник
Правильная установка станка
1.ОБЩИЕ СВЕДЕНИЯ
Правильная установка станка в цехе является важным этапом его подготовки к эксплуатации. При этом необходимо наметить место установки и выбрать тип фундамента.
Рабочее место станка в основном определяется общей планировкой цеха и принятым принципом расстановки оборудования (потоком по ходу технологического процесса обработки или по типам оборудования). Одновременно стремятся обеспечить наилучшую освещенность рабочего места естественным светом в дневное время, удобство организации рабочего места (тумбочка, места для заготовок и обработанных деталей, обслуживание краном, сообщение с проходом или проездом), а также выдерживают нормативные интервалы между соседними станками и до поддерживающих колонн. При выборе типа фундамента раньше считали, что все без исключения станки всегда необходимо устанавливать на специальный фундамент. Это положение подчеркивалось в каталогах заводов-поставщиков и в руководящих материалах различных проектных организаций.
При решении вопроса о способе установки станка (на индивидуальный фундамент или без него) необходимо учитывать ряд факторов:
1. Характер нагрузки в станке (статический или динамический). К станкам со статической нагрузкой условно относят те, у которых скорость поступательно-движущихся частей не превышает 3–8 м/мин, главное движение у них обычно вращательное к станкам с динамической нагрузкой относятся главным образом строгальные, долбежные и др.
2. Жесткость станины станка, которая зависит от ее формы и общих габаритов станка. Наиболее жестки станины коробчатого типа. ЭНИМС считает для легких и средних станков станину достаточно жесткой, если отношение ее длины l к высоте h. Станки с большими габаритами обычно имеют недостаточно жесткие станины, особенно если она состоит из нескольких частей, соединенных по стыкам болтами, штифтами или шпонками
3. Точность деталей и режим работы – чем выше требуемая точность обработки или чем тяжелее режим работы, тем выше требования к фундаменту.
4. Наконец, нужно учитывать качество грунта под полом цеха, где устанавливается станок, глубину его промерзания в данной местности зимой, наличие по соседству установок, создающих сильные колебания грунта, и т. п.
Все фундаменты под станки можно разбить на две основные группы:
I группа – фундаменты, служащие только основанием для станка;
II группа – фундаменты в полном смысле слова, с которыми станок жестко связывают фундаментными болтами.
Фундамент любого типа позволяет сосредоточенную силу от веса станка распределить на грунт в соответствии с его несущей способностью и содействует быстроте и надежности выверки положения станка.
Назначение фундаментов второй группы, кроме того, состоит в увеличении устойчивости и жесткости станка.
Дополнительную устойчивость станок получает потому, что при присоединении к станине дополнительной массы понижается центр тяжести установки и, кроме того, устойчивость повышается за счет охвата фундамента со всех сторон грунтом
Жесткость возрастает за счет неподвижного замыкания ножек станины или усиления ее основания, так как станок к фундаменту второй группы намертво притягивается фундаментными болтами. За счет увеличения массы уменьшается частота собственных колебаний и увеличивается затухание, что ведет к уменьшению возможных амплитуд колебаний системы. Наконец, опять-таки благоприятным является действие окружающего фундамент грунта, который гасит вибрации данной системы и защищает ее от толчков и колебаний окружающих установок.
Следует сразу оговориться, что если жесткость отдельных узлов станка (суппорт, стол, консоль, бабки) недостаточна, то на таком станке на самом массивном и надежном фундаменте могут возникнуть недопустимо большие вибрации.
Ориентировочно группу фундамента в зависимости от конструктивных признаков станка и его общей характеристики можно назначать по табл. 1. Если станок хотя бы по одному из признаков требует фундамента второй группы, то для него нужно рассчитывать и строить фундамент этой группы.
Конструктивные и эксплуатационные признаки станка
Общая характеристика станка
Рекомендуемая группа фундамента
Станки нормальной точности
Характер действующего усилия
Станки со статическими основными нагрузками (большинство станков с главным вращательным движением).
Станки с динамическими основными нагрузками (станки с возвратно-поступательным движением: продольно — и поперечно-строгальные, долбежные и зубодолбежные, затыловочные, протяжные и др.)
Легкие станки весом до 2 т.
Средние станки весом от 2 до 10 т.
Тяжелые станки весом свыше 10 т.
Станки со встроенными двигателями.
Станки с отдельно стоящим электродвигателем или с приводом of трансмиссии.
Станки с жесткой станиной
Станки с недостаточно жесткой станиной
Недостаточная устойчивость (малое основание)
Некоторые конструкции радиально-сверлильных, агрегатных и специальных станков.
ПРИСПОСОБЛЕНИЯ ДЛЯ УСТАНОВКИ И ВЫВЕРКИ СТАНКОВ
При установке, независимо от группы фундамента, станок должен быть точно выверен на горизонтальность или вертикальность. Для облегчения и ускорения установки применяют специальные приспособления, помещаемые между основанием станка и фундаментом.
Плоские металлические подкладки толщиной 0,3–1 мм в настоящее время почти совсем не применяются в силу ряда недостатков:
а) добавление или удаление подкладок связано с необходимостью каждый раз приподнимать станок, что делают или краном или ломиками вручную, что всегда сопровождается опасностью сдвинуть станок с места установки;
б) ступенчатость регулировки и необходимость иметь большой набор разных подкладок, которые легко забиваются, гнутся, теряются;
в) жесткость установки на таких подкладках недостаточна из-за многочисленных стыков и недостаточной гладкости и прямолинейности подкладок.
Рис. 3. Стальной установочный клин
Установочные клинья (рис. 3) широко применяются для установки легких и средних станков нормальной и пониженной точности. Клинья располагают по периметру основания с интервалами в 500 – 600 мм. Если станок устанавливается на фундамент второй группы, то клинья следует располагать возможно ближе к фундаментным болтам. При выверке положение станка можно плавно изменять подбиванием клиньев.
Рис. 4. Установочный башмак
Установочные башмаки применяют для монтажа средних и крупных станков. Можно их использовать и для установки прецизионных станков. Башмак состоит из прочного корпуса и клина (рис. 4), который можно перемещать винтом с помощью двух гаек. При этом винт не испытывает изгиба, так как может свободно перемещаться по вертикальной прорези стойки. Продолговатые отверстия в клине и основании башмака позволяют при необходимости свободно пропускать через них фундаментный болт.
По окончании выверки винт теми же двумя гайками неподвижно стопорится. На рисунке указаны примерные размеры башмака сред ней величины. Установочные башмаки ставят с интервалами в 1 – 1,5 м но не менее трех-четырех под станок.
Рис. 5. элемент фундаментной плиты
Фундаментные плиты применяют исключительно для установки крупных и особенно прецизионных станков. Фундаментная плита изготовляется из чугуна достаточно массивной (рис. 5). На плите применительно к устанавливаемому станку через 1–1,5 м встроены башмаки, подобные рассмотренным выше. Плита заделывается в верхнюю часть фундамента при его кладке и связывается с ним или особыми выступающими снизу шпонками, или притягивается специальными заделанными в кладку болтами. Фундаментная плита целиком предохраняет станок от деформаций в случае неравномерной осадки фундамента. Горизонтальность станку во всех случаях легко придать регулировкой башмаков.
К удобным, но малораспространенным средствам выверки станков можно отнести выверку с помощью болтов, расположенных в краях основания станины по всему ее периметру. Станок в этом случае опирается на опорные концы болтов, которые в свою очередь должны опираться на достаточно толстые стальные пластины. По окончании выверки станка болты закрепляются контргайками.
Вторую группу приспособлений для установки станков составляют фундаментные болты. Они должны обеспечивать достаточно жесткое и прочное соединение станины с фундаментом второй группы. Развиваемая болтами сила прижима совместно с весом станка вызывает силы трения между основанием станины и фундаментом, всегда превышающие сдвигающие силы, которые могут возникнуть и действовать на станок. Способствует этому и цементный буртик, образующийся после подливки вокруг подошвы станка. Поэтому фундаментные болты работают только на растяжение. Из опыта установлено, что не следует применять фундаментные болты диаметром меньше 14 мм, так как при затяжке они деформируются («текут»). При креплении легких и средних станков фундаментными болтами диаметром свыше 14 мм их обычно расчетом не проверяют. Диаметры болтов для тяжелых станков рекомендуется рассчитывать.
Рис. 6 Узел крепления станка на фундаменте второй группы
Длину фундаментных болтов определяют из условия равнопрочности болта на растяжение и кладки фундамента на отрыв. Работающий на отрыв участок кладки принимают в виде опрокинутой усеченной пирамиды (рис. 6) с углом 2p при вершине.
В табл. 2 приведены значения минимальной длины заделки фундаментных болтов при различных материалах кладки, полученные на основании расчета.
Для надежности крепления грани колодцев под болты делают с небольшим уклоном.
На фиг. 6 показана правильно выполненная подливка станка цементным раствором.
Конструктивно фундаментные болты различаются главным образом
оформлением хвостовой части (рис. 7).
Существуют конструкции фундаментных болтов, при которых не требуется заливки цементом; такие болты называются анкерными и легко могут демонтироваться.
При кладке фундамента вблизи дна прямого колодца заделывают анкерную плиту (рис. 8), за которую и крепят затем болт. Для этого пропускают прямоугольную головку болта через такое же отверстие плиты с последующим поворотом ее на 90° до упора. После этого болт затягивают обычным способом.
Рис. 7.Конструктивные разновидности фундаментных болтов
При прочих равных условиях длина анкерного болта может быть принята меньше длины фундаментного болта, так как анкерная плита увеличивает поверхность отрываемого участка кладки.
Анкерные болты применяют редко и только для крепления тяжелых станков.
УСТАНОВКА СТАНКОВ НА ФУНДАМЕНТАХ ПЕРВОЙ ГРУППЫ
Рис. 8. Крепление анкерным болтом
Как указывалось, такие фундаменты служат лишь основанием для станков. Их роль обычно выполняют цементный пол цеха или бетонное основание, на котором настлана деревянная шашка. Установку станка прямо, на шашку рекомендовать нельзя, так как станок трудно выверить, выверка быстро нарушается, станок стоит неустойчиво, перекашивается и деформируется. Ничем не оправдано длительное нарушение этого положения на ряде заводов, где многие станки ставят непосредственно на торцевую шашку, подбивая их при этом деревянными клиньями. Клинья часто расщепляются и раздавливаются станком. Установка еще быстрее нарушается при попадании на пол эмульсии, что в какой-то мере всегда имеет место в производственных условиях.
При многоэтажных зданиях установку станков производят и на междуэтажных перекрытиях, что, конечно, менее желательно и требует дополнительных расчетов [4].
К фундаментам первой группы также относятся отдельные жесткие плиты, на которых станок можно быстро выверить и которые уменьшают удельное давление на грунт. Минимальная глубина заложения основания таких плит, достигающих размеров 4х4 м2, определяется глубиной растительного слоя почвы. Относительно небольшой вес позволяет изготовлять их передвижными. При всех перемещениях станка, возникающих при перепланировке цеха, вместе с ним передвигают и плиту. Работы от этого значительно ускоряются и удешевляются.
При проектировании всех фундаментов для станков, аналогично практике строительного проектирования вообще, сначала из конструктивных соображений намечают приемлемые размеры фундамента, а затем производят их проверочный расчет. Расчет фундаментной плиты складывается из нескольких этапов.
Первый этап. Намечают контур и размеры плиты в плане, исходя из формы и размеров подошвы станка. При этом контур максимально упрощают. Кроме того, плиту надо проектировать так, чтобы вес станка с плитой по возможности распределялся на грунт равномерно, т. е. чтобы равнодействующая сил тяжести была приложена центрально.
Указанные положения первого этапа справедливы не только для жестких плит (фундаменты первой группы), но и для фундаментов второй группы.
Рис. 9. Схема действия расчетных усилий на плиту – фундамент первой группы.
Второй этап. Рассчитывают высоту (толщину) плиты при этом условно исходят из следующих двух соображений:
1) фундаментную плиту рассматривают как жесткую балку; конечной длины на упругом основании;
2) нагрузку на плиту принимают приложенной по середине ее длины (рис. 9).
Такое положение может создаться при опускании станка краном и кратковременной постановке его ребром на плиту.
Напряжение изгиба в среднем поперечном сечении плиты при условии отсутствия трещин
, т/м2,
где М=0,15qBL – изгибающий момент, тм;
– момент сопротивления площади поперечного сечения, м3;
– нагрузка на единицу ширины плиты в т/м;
Gст – вес станка, т;
L, B, h – соответственно длина, ширина и высота плиты, м;
Rz – допустимое напряжение изгиба для материала плиты в т/м2.
После подстановки окончательно получаем
, кг/см2.
Отсюда определяют значение h.
Принимая Rz=24 т/м2 для кирпичной кладки Rz=18 т/м2 для бутовой кладки и учитывая некоторые производственные и конструктивные соображения, рекомендуется толщину плит принимать не меньше указанной в табл. 3.
Наименование материала фундамента
Бетон и железобетон
Армированная кирпичная кладка
Третий этап. Производят проверочный расчет удельного давления на грунт
, кг/см2
где G – суммарный вес станка, плиты-фундамента и наиболее тяжелого обрабатываемого изделия, кГс;
FФ – площадь соприкосновения фундамента с грунтом, см2;
Rd – допускаемое давление на грунт, кг/см2;
Значение Rd для некоторых грунтов даны в табл. 4. При нецентральном приложении нагрузки на фундамент давление на грунт местами оказывается намного больше среднего расчетного, в результате чего возможны осадка грунта, перекосы фундамента, появление в нем трещин, деформация станка и т. п.
Грунты сухие или естественной влажности
Грунты очень влажные и мокрые
Мощность слоя ниже фундамента, м
Угол естественного откоса j0
Угол естественного откоса j0
Растительная земля, чернозем
Глинистый грунт, суглинок средней плотности
Плотно слежавшаяся глина и суглинок
Песок среднекрупный разрыхленный
Песок среднекрупный плотно 5,0слежавшийся
Галька среднекрупная плотнослежавшаяся
Песчаники, известняки средней твердости
Примечание. Углом естественного откоса называется угол, образуемый с горизонтальной линией свободной боковой поверхностью насыпи из земли или других сыпучих материалов в состоянии равновесия.
Если избежать нецентральности приложения нагрузки почему–либо нельзя, то, зная ориентировочно величину смещения, нужно определить наибольшее удельное давление, могущее возникнуть под фундаментом. Расчет производят по формулам сопротивления материалов для крайних точек А Б опоры А Б
.
где е – величина смещения точки приложения силы от центра фундаментной плиты; остальные обозначения одинаковы с предыдущими.
Наибольшее из найденных значений должно быть меньше допустимого удельного давления.
На рис. 10, а, б,е даны эпюры распределения давлений под опорой для нескольких характерных случаев эксцентричного приложения нагрузки.
Практически при любых вынужденных условиях установки станков эксцентричность не должна выходить из пределов:
.
Четвертый этап. Производят проверку фундамента на смятие под установочными элементами (клиньями, башмаками) по формуле
, кг/см2
где – статически действующая нагрузка на одну подкладку, кг;
– вес станка с наиболее тяжелой деталью, а для станков с динамической нагрузкой – с учетом последней, кг;
n – число подкладок по периметру основания станка;
F – площадь основания подкладки, см2;
Rаоп – допустимое напряжение на смятие, которое для всех фундаментов можно принимать равным 8–10 кг/см2. Если вес станка распределяется на подкладки неравномерно, то проверяют наиболее нагруженную подкладку. Например, у токарных станков приблизительно 70% веса приходится на переднюю стойку и около 30% на заднюю. В месте наибольшей нагрузки следует или чаще ставить подкладки, или применять подкладки с большей площадью основания. При расчете динамические нагрузки условно можно привести к эквивалентным статическим нагрузкам:
1) при возвратно-поступательном движении эквивалентную статическую нагрузку следует принимать равной пятикратному значению силы инерции и полагать ее приложенной в сторону действия фактической силы инерции;
2) при вращательном движении, когда динамическая нагрузка вызывается центробежными силами неуравновешенных вращающихся масс, эквивалентную статическую нагрузку следует принимать равной 20-кратному весу обрабатываемой детали и полагать ее приложенной дополнительно к весу детали
При установке станков на фундаментах первой группы роль собственно фундамента фактически выполняет станина. Она воспринимает все нагрузки и обеспечивает нормальную работу станка. Когда станина полностью обеспечить этого не может, прибегают к частичному закреплению станка на фундаменте первой группы путем подливки цементного раствора. Никакого иного дополнительного крепления при этом не производят. Особенно широко крепление одной подливкой применяют для станков, установленных на междуэтажных перекрытиях.
Подливка цементного раствора позволяет распределить вес станка на большую площадь, зафиксировать положение, приданное ему установочными элементами при выверке, и предохраняет станок от боковых сдвигов. Для осуществления подливки вокруг опорной части станка делают деревянную опалубку. Пространство, образованное опалубкой, заполняют цементным раствором с расчетом подлить его под всю подошву станка и образовать вокруг основания станины бурт высотой 10—20 мм. Производят подливку цементным раствором 1 : 3 (соотношение по весу цемента и песка).
УСТАНОВКА СТАНКОВ НА ФУНДАМЕНТАХ ВТОРОЙ ГРУППЫ
Нередко станки крепят фундаментными болтами к общим основаниям, т. е. к бетонированному полу, или междуэтажному перекрытию; под болты при этом пробивают колодцы. Станок ставят на швеллеры №10 или 12, так как на них его быстрее и удобнее можно вывереть, подливке под станок лучше затекает цемент, и станок после монтажа оказывается наравне или даже несколько выше уровня деревянного покрытия пола.
Если под деревянным настилом цеха нет бетонного основания, то под линию станков иногда применяют фундаменты в виде бетонных лент или полос шириной 1,2–3 м и толщиной 20–40 см и более. Для них в грунте выбирается канава глубиной 15–30 см.
Еще шире применяют следующий прием. Сняв настил, на месте установки станка несколько зачищают грунт. Затем прямо на него соответственно форме основания станка кладут несколько отрезков Швеллеров или двутавровых балок одинакового номера. Если швеллер ставят не на полку, а кладут плашмя, то под него на грунт предварительно помещают стальные пластины. Станок выверяют на швеллерах с помощью клиньев. В отверстия станины закладывают небольшие фундаментные болты, а вокруг из досок делают опалубку достаточной высоты. При этом края опалубки должны отстоять от краев станины не менее как на 10–15 см. Затем станок подливают цементным раствором, а после схватывания цемента через несколько дней окончательно затягивают фундаментные болты. Деревянное покрытие пола восстанавливают вплотную до созданного основания, на котором иногда оставляют опалубку.
Однако наиболее типичными фундаментами второй группы являются фундаменты в виде отдельных массивов под тот или иной станок. Их расчет, аналогично расчету фундаментов первой группы, складывается из ряда этапов.
Первый этап. Намечают контур и размеры фундамента в плане так же, как это было указано при расчете фундаментов первой группы. При этом расстояние от края основания станины до края фундамента должно быть не менее 10 см.
Второй этап. Задаются весом фундамента. Для станков со статической нагрузкой обычно он равен 0,6–1,5 веса станка, ориентировочно лучше принимать его в пределах (0,8 – l,0)Gст.
Для станков с преобладающей динамической нагрузкой вес фундамента принимают больше, порядка (2–3)Gcт.
Третий этап. Вычисляют высоту фундамента НФ, зная его вес СФ, вид в плане площадью FФ> и удельный вес материала gФ:
.
Далее проверяют полученную величину НФ по другим факторам, влияющим на высоту фундамента, и если она не удовлетворяет им, то корректируют ее в сторону увеличения, – при этом нужно пересчитать и вес фундамента.
1. Глубина заложения соседних фундаментов должна быть такой, чтобы угол 9 между вышележащими или нижележащими основаниями (рис. 11) не превышал угла естественного откоса. При таком положении исключается непосредственное влияние фундаментов друг на друга за счет оседания грунта.
Рис. 11 Зависимость глубины заложения фундамента от глубины соседних фундаментов.
2. В неотапливаемых помещениях фундамент должен залегать на глубину не менее 0,7 глубины промерзания почвы в данной местности, а в отапливаемых не менее как на половину глубины промерзания. Ориентировочно глубину промерзания можно принимать по табл. 5.
Характерные пункты местности
Глубина промерзания почвы, м
Архангельск, Ижевск, Комсомольск, Челябинск, Омск, Барнаул, Новосибирск, Екатеринбург, Магнитогорск, Куйбышев
Саратов, Волгоград, Караганда, Петрозаводск
Источник