Устройство кессона для фундамента
В настоящее время кессоны применяются, когда:
- – подземное сооружение возводится в непосредственной близости от существующих зданий или сооружений и есть опасность выноса или выпора грунта из-под подошвы их фундаментов;
- – подземное сооружение строится в сильно обводненных грунтах. В этих условиях опускной колодец требует больших затрат на водоотлив, и поэтому экономически выгоднее использовать кессон. Кроме того, кессон находит применение при проходке горизонтальных туннелей в водонасыщенных грунтах.
По назначению различают кессоны: для устройства глубоких фундаментов и заглубленных зданий; для выполнения различных строительных работ под водой.
По способу опускания кессоны делят на: опускаемые с поверхности земли и из котлованов; островные, погружаемые на местности, покрытой водой, с искусственных островков; наплавные, опускаемые с воды путем затопления кессонной камеры, которой предварительно сообщается плавучесть [27].
VII.2.2. Элементы кессона и оборудование для его опускания
VII.2.2.а. Кессоны для устройства глубоких фундаментов и заглубленных зданий
Собственно кессон (рис. VII-22) состоит из кессонной камеры, надкессонного строения, гидроизоляции Обычно кессонная камера устраивается из железобетона и лишь в редких случаях — из металла. Форма сечения кессонной камеры — прямоугольная, квадратная или круглая. Стенки камеры наклонные и заканчиваются ножом (рис. VII-23). Высота камеры от банкетки до потолка принимается не менее 2,2 м. В потолке оставляются отверстия для установки шахтной трубы, патрубков для трубопроводов сжатого воздуха, воды, электроэнергии.
Надкессонное строение выполняется в зависимости от назначения кессона как колодец с железобетонными стенками (рис. VII-22, а) или в виде сплошного массива из монолитного бетона или железобетона (рис. VII-22, б). Иногда в конструкции надкессонного строения предусматривается установка по наружному контуру кессона тонких железобетонных плит-оболочек, выполняющих роль внешней опалубки. С внутренней стороны плиты-оболочки снабжается выпусками арматуры или покрываются мелким щебнем (щебеночная шуба). То и другое служит связью для бетона, укладываемого в надкессонное строение.
Гидроизоляция наносится на наружные стенки кессона для защиты от проникания воды внутрь кессона. В качестве гидроизоляции применяются торкрет, покраска битумно-бензиновым раствором, штукатурка из холодных битумных мастик и из горячих асфальтовых растворов, металлические листы, свариваемые в виде ванны. Перед нанесением гидроизоляции поверхность бетона должна быть хорошо очищена от грязи, краски, масляных пятен и т.п. Удаляют также слой слабого бетона, выступы и наплывы на поверхности бетона, расчищают каверны.
VII.2.2.б. Наплавные кессоны
При возведении фундамента, опоры или заглубленного здания вдали от берегов водоема при значительных глубинах воды, в связи с чем устройство искусственных островков становится сложным и экономически невыгодным, используют наплавные кессоны.
Наплавной кессон (рис. VII-24) состоит из кессонной камеры, замкнутой камеры равновесия, открытой сверху центральной шахты, регулировочных шахт, рабочего балласта на потолке камеры.
Камера равновесия, центральная и четыре регулировочные шахты наполняются водой, которая служит балластом кессона при его погружении. Для всплытия кессона водный балласт удаляется из камеры равновесия сжатым воздухом и из шахт — насосами [44].
VII.2.2.в. Оборудование для опускания кессонов
В СССР наибольшее распространение получил шлюзовой аппарат конструкции Н.И. Филиппова. Он предназначен для шлюзования людей и грузов, поступающих в кессонную камеру, и выполнения грузоподъемных операций при спуске в камеру или подъеме различных грузов из нее. Шлюзовой аппарат соединен с кессонной камерой шахтными трубами.
Схема шлюзового аппарата представлена на рис. VII-25. Он состоит из центральной камеры, пассажирского прикамерка, грузового прикамерка. Сверху центральной камеры расположен подъемный механизм, состоящий из барабана, редуктора и электродвигателя.
К барабану на стальном канате подвешена бадья. Пассажирский и грузовой прикамерки имеют подвесные на роликах двери, открывающиеся только внутрь. Для герметичности при шлюзовании двери снабжены резиновыми прокладками. Сжатый воздух от компрессорной станции подается в центральную камеру и прикамерки по трубопроводу.
В центральной камере и грузовом прикамерке уложен рельсовый путь под вагонетку. Грунт, поднятый из кессонной камеры в бадье, выгружается в вагонетку с откидным дном и выдается через грузовой прикамерок наружу, где вагонетка разгружается в специально устроенный желоб. Внизу центральная камера заканчивается овальным фланцем, к которому приболчивается шахтная труба. Шахтные трубы состоят из звеньев длиной по 2 м, соединяемых между собой болтами. Внутри шахтной трубы имеется перегородка, разделяющая трубу на два отделения — людской лаз и грузовое отделение. Людской лаз оборудован лестницей, а грузовое отделение — направляющими устройствами для спуска-подъема бадьи.
Трубопроводы для подачи сжатого воздуха монтируются из двух ниток, идущих параллельно от компрессорной станции. Диаметр трубопроводов устанавливается расчетом в зависимости от его длины и расхода сжатого воздуха. От каждой нитки магистрального воздухопровода делают три отвода — два для подачи сжатого воздуха в кессонную камеру и один в центральную камеру и прикамерки шлюзового аппарата. Рабочей является одна из ниток воздухопровода, вторая — резервная.
Компрессорная станция монтируется, как правило, из стационарных компрессоров производительностью 10—20 м 3 /мин с электроприводом. Количество компрессоров определяется по максимально возможному расходу воздуха. Кроме того, на случай аварии должны быть запасные компрессоры. Согласно правилам техники безопасности, резервная мощность компрессорной станции должна быть: при одном рабочем компрессоре не меньше 100%, при двух — не менее 50%, при трех и более — не меньше 33% рабочей мощности. Технические данные воздушных компрессоров стационарного типа, применяемых на кессонных работах, приведены в табл. VII-3.
Технические данные воздушных компрессоров стационарного типа
Показатель | Марка компрессора | |||||
В-300-2К | 2Р-20/8 | 160В-10/8 | 200В-10/8 | 2СА-8 | КВ-200 | |
Производительность, м 3 /мин | 40 | 20 | 20 | 10 | 10 | 4,5 |
Давление воздуха после II ступени, МПа | 0,8 | 0,8 | 0,8 | 0,8 | 0,8 | 0,6 |
Частота вращения, об/мин | 330 | 500 | 720—735 | 720 | 480 | 650 |
Мощность двигателя, кВт | 250 | 120 | 140 | 75 | 75 | 50 |
Габариты, мм: длина ширина высота | 3300 1820 2200 | 1800 1500 2000 | 1715 1910 1675 | 1350 962 1430 | 1550 1670 1870 | 1100 665 1130 |
Вес, кН | 80 | 45 | 28 | 14,5 | 32 | 7,5 |
Охлаждение | Водяное |
На строительстве, если максимальное давление сжатого воздуха в кессоне превышает 0,15 МПа, обязательно устанавливается лечебный шлюз для заболевших кессонной болезнью.
Оборудование для гидромеханической разработки грунта в камере кессона состоит из гидромониторов (рис. VII-13) и гидроэлеваторов (рис. VII-14). В комплекс одной установки для гидромеханической разработки грунта входят два гидромонитора и один гидроэлеватор. Принято считать, что одним гидромонитором можно обслужить в песчаных и супесчаных грунтах 150—250 м 2 , а в глинистых грунтах — 100—150 м 2 площади кессона.
Величины удельных расходов мониторной воды и оптимальных скоростных напоров приведены в табл. VII-4 и VII-5.
Удельный расход мониторной воды
Грунты | Удельный расход мониторном воды на 1 м 3 грунта, м 3 |
Пески: пылеватые мелкие средней крупности крупные гравелистые | 4—7 5—8 6—10 8—12 10—14 |
Супеси: текучие пластичные твердые | 7—9 8—10 9—12 |
Суглинки: текучие пластичные твердые | 9—10 10—12 11—15 |
Глины: текучие пластичные твердые | 10—11 12—16 14—20 |
Оптимальные скоростные напоры
Грунты | Оптимальные скоростные напоры, м |
Пески: рыхлые средней плотности плотные | 7—10 10—15 15—20 |
Супеси: текучие пластичные твердые | 30—40 40—50 50—80 |
Суглинки: текучие пластичные твердые | 40—50 50—70 70—100 |
Глины: текучие пластичные твердые | 50—70 70—100 100—150 |
Смородинов М.И. Справочник по общестроительным работам. Основания и фундаменты
Источник
Устройство фундаментов с помощью кессона.
В сильно обводненных грунтах, содержащих прослойки скальных пород или твердых включений (валуны, погребенную древесину и т.д.) погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твердых включений.
В этом случае используется кессонный метод устройства фундаментов глубокого заложения, который был предложен во Франции в середине 19в.
Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.
Рис.13.9. Схема устройства кессона:
а – для заглубленного помещения; б – для глубокого фундамента; 1 – кессонная камера; 2 – гидроизоляция; 3 – надкессонное строение; 4 – шлюзовой аппарат; 5 – шахтная труба
Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.
В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.
Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.
Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.
Шлюзовой аппарат, соединенный с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее.
Рабочий процесс. Рабочий входит в прикамерок шлюза, где давление постепенно повышается до имеющегося в рабочей камере. На этот процесс затрачивается от 5 до 15 мин., что необходимо для адаптации организма человека, после чего по шахтной трубе рабочий опускается в рабочую камеру кессона. Выход из рабочей камеры кессона осуществляется в обратной последовательности, но при этом на снижение давления воздуха в прикамерке шлюза до уровня атмосферного давления требуется 3-3,5 раза больше времени, чем вначале, т.к. быстрый переход от повышенного давления к атмосферному может быть причиной начала кессонной болезни.
Сжатый воздух в кессонную камеру начинают подавать не сразу, а как только ее нижняя часть при погружении достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия:
Где — избыточное (сверх атмосферного) давление воздуха, кПа;
— гидростатический напор на уровне банкетки ножа, м;
— удельный вес воды,
После опускания кессона на проектную глубину все специальное оборудование демонтируется, а рабочая камера заполняется бетоном.
Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.
Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.
41. Возведение фундаментов методом «стена в грунте».
а – котлованы в городских условиях; б – подпорные стенки; в – тоннели; г – противофильтрационные диафрагмы; д – подземные резервуары
Способ заключается в том, что сначала по контуру будущего сооружения в грунте отрывается узкая глубокая траншея (b=60…100 см, H≤40…50 м), которая затем заполняется бетонной смесью или сборными железобетонными элементами. Затем, после полного удаления грунта из внутреннего пространства до проектной отметки возводят внутренние конструкции.
Стена может служить:
1. элемент фундамента
2. заглубленные сооружения
3. противофильтрационные завесы: в водонасыщенных грунтах при высоком уровне подземных вод. Способ особенно эффективен при заглублении стен в водоупорные грунты, что позволяет полностью отказаться от водоотлива или глубинного водопонижения.
4. ограждение котлована в городе: в стесненных условиях, а также при реконструкции сооружений. Устройство глубоких котлованов и заглубленных помещений вблизи существующих зданий и сооружений без нарушения их устойчивости.
Технология устройства «стены в грунте»— методом последовательных захваток.
1. Устройство сборной или монолитной форшахты, которая служит направляющей для землеройных машин, опорой для подвешивания армокаркасов, бетолитных труб, сборных железобетонных панелей и т.п. и обеспечивает устойчивость стенок в верхней части.
2. Отрывка котлована отдельными захватками. Откопав первую захватку, на всю глубину стены по ее торцам устраивают ограничители, арматурный каркас и укладывают бетонную смесь.
3.Затем переходят к захватке «через одну», а после ее устройства – к промежуточной и т.д., в результате получается сплошная стена (рис. 13.14).
Конструкция форшахты из Г-образных (уголкового профиля) блоков
Рис.13.14. Последовательность возведения «стены в грунте»: а – первая очередь работ; б – вторая очередь работ; 1 – форшахта; 2 – базовый механизм; 3 – бетонолитная труба; 4 – глинистый раствор; 5 – грейфер; 6 – траншея под одну захватку; 7 – арматурный каркас; 8 – бетонная смесь; 9 – забетонированная секция; 10 – готовая «стена в грунте»
Для удержания стен захватки против обрушения по мере отрывки подливают глинистый раствор. После отрывки захватки и заполнения ее бетонной смесью вытесненный глиняный раствор, содержащий частицы разрабатываемой породы, идет на очистку и снова в траншею (с потерей
После возведения «стены в грунте» по всему периметру сооружения (т.е. конструкция замыкает в плане будущее сооружение) поэтапно удаляют грунт из внутреннего пространства. Можно по периметру делать грунтовые анкера или распорки. Если нет, то устойчивость стены обеспечивается заделкой в грунт основания.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Источник