Конструктивные решения элементов каркасно-панельных зданий. Узлы
Элементами каркасно-панельных зданий являются: фундаменты, колонны, ригели, плиты перекрытия, диафрагмы жесткости, лестничные марши и площадки.
1) Фундаменты. В многоэтажных каркасных зданиях применяют столбчатые фундаменты в виде монолитных или сборных конструкций для отдельно стоящих колонн или столбов. Колонны каркаса в большинстве решений опирают на фундаментные блоки стаканного типа (блок-стакан). Монолитный фундамент представляет собой ступенчатую конструкцию с подколонником и стаканом для установки колонн. Сборные фундаменты могут иметь различные варианты решения устройства блок-стаканов.
а) монолитный фундамент:
б) сборный фундамент:
Для передачи нагрузки от стен на фундамент используют фундаментные балки, которые могут опираться на бетонный столбик, ступень фундамента или на подколонник.
трапециевидного сечения: таврового сечения:
Опирание фундаментной балки на подколонник фундамента
Схема расположения элементов фундамента
2) Колонны применяют сечением 300×300 мм в зданиях высотой до 4 этажей и сечением 400×400 мм в зданиях от 4 до 16 этажей.
Выпускают колонны высотой на 1, 2 и 3 этажа, что позволяет в малоэтажных зданиях применять бесстыковые колонны, а в многоэтажных – обходится минимальным числом стыков. Стыки колонн – контактные со сваркой выпусков продольной арматуры, установкой хомутов и омоноличиванием стыков.
В зданиях этажностью более 16 этажей применяют колонны увеличенного сечения или колонны, изготовленные из бетона повышенного класса с увеличением процента армирования.
Колонны применяют крайнего и среднего ряда. Стык колонн должен находиться на 600 мм выше уровня перекрытия.
3) Ригель изготовляют таврового сечения с одной или двумя полками для опирания плит перекрытий, лестничных маршей и аналогичных конструкций.
4) Плиты перекрытий подразделяют на:
а) межколонные связевые – пристенные и средние шириной 1490 мм с пазами для колонн глубиной 100 мм;
б) рядовые шириной 1490 и 1190 мм, укладываемые между связевыми.
Плиты связывают между собой стальными анкерами, продетыми сквозь монтажные петли.
5) Диафрагмы жесткости. Для обеспечения пространственной жесткости каркасно-панельного здания в зданиях устанавливают диафрагмы жесткости, представляющие собой совокупность несущих и ограждающих конструкций. Стены диафрагм выполняют из железобетонных панелей, которые снабжены по верху одной или двумя консольными полками для опирания плит перекрытия. Диафрагмы проектируют высотой в один этаж глухими или с дверными проемами. Жесткие связи диафрагм с колоннами предусматривают не менее чем в двух уровнях по высоте этажа. Соединение выполняют при помощи сварки закладных деталей. Устанавливают диафрагмы на фундамент.
6) Лестничные марши и площадки. В каркасных зданиях применяют с марши с полуплощадками или лестницы, выполняемые из отдельных ступеней, уложенных по косоурам (металлическим или железобетонным балкам).
1 – марш с двумя полуплощадками; 2 – дополнительная площадка верхнего этажа; 3 – ригель; 4 – заделка бетоном; 5 – фрагмент ограждения; 6 – закладные детали
7) Стеновые панели в каркасных зданиях применяют самонесущими (в зданиях небольшой этажности) и навесными. Применяют однослойные или трехслойные панели.
Герметизация и утепление стыков стеновых панелей
а) вертикальный стык
б) горизонтальный стык
Опирают стеновые панели на краевой элемент перекрытия или на наружный продольный ригель. К колонне панели крепят с помощью стальных элементов, привариваемых к закладным деталям. УЗЛЫ
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Основные узлы в каркасном доме
Краткий обзор основных узлов каркасного дома
Данный обзор содержит только основные элементы применяемые в каркасной технологии. На каждый дом делается отдельный проект КД и это является обязательным условием для строительства надежного дома. Иллюстрации приведенные далее отражают суть каркасного домостроения, но это далеко не все узлы и решения применяемые при строительстве, многие элементы не показаны для более простого восприятия.
1. Монтаж подкладочной доски на фундамент. Выполняется с применением гидроизоляции. Это основа к которой будет крепиться перекрытие. Подкладочная доска надежно крепится к фундаменту специальными анкерами.
2. По периметру подкладочной доски монтируется обвязка перекрытия.
3. Обязательный элемент в конструкции, это перекрывание обвязки и подкладочной доски. Данный узел дополнительно связывает элементы для большей надежности и улучшения теплоизоляции.
4. Далее монтируются балки перекрытия. Балки выполняются из сухой строганой доски 195*45 мм, с шагом не более 400 мм. Пол Вашего дома будет теплым и надежным, без зыбкости и скрипа.
5. Дополнительные бриджинги (деревянные перемычки) для жесткости перекрытия.
6. Шаг балок перекрытия не более 400 мм. Толщина утепления 200-250 мм, в зависимости от проекта.
7. На балки монтируется верхняя обвязка перекрытия. К ней будут крепиться стены будущего дома.
8. На перекрытие монтируются каркасные стены (далее в тексте статьи стены будут показаны отдельно с указанием обязательных элементов и узлов).
9. Стены надежно фиксируются на верхней обвязке перекрытия и между собой (через специальную угловую стойку)
10. На стены монтируется верхняя обвязка стен. Это специальные элементы, которые дополнительно распределяют нагрузку от вышестоящих стен или стропильных ферм.
11. Верхняя и нижняя обвязки дополнительно перекрывают стык углов смежных стен, это делает конструкцию более жесткой и надежной.
12. На верхнюю обвязку стен монтируется перекрытие этажа. Схема монтажа и элементы соответствуют монтажу цокольного перекрытия.
13. Ни первое, ни второе перекрытие не утепляются до того, как дом не будет под крышей и не будет смонтирован фасад, стены тоже утепляются уже после того, как дом полностью защищен от атмосферных осадков, это гарантирует, что в утеплитель не попадет влага на этапе монтажа.
14. Далее на перекрытие монтируются стены второго этажа.
15. Для жесткости стены, в обвязку и в стойки врезаются диагональные связи (укосины). Для распределения нагрузки от верхнего перекрытия и вышестоящих стен под верхней обвязкой врезается дополнительный ригель (горизонтальная доска, под верхней обвязкой). Данный элемент равномерно передает нагрузку на все стойки каркасной стены
16. Диагональная связь (укосина). Монтируется под углом от 40 до 55 градусов.
17. Финский ригель.
18. Для распределения нагрузки от верхнего перекрытия и вышестоящих стен под верхней обвязкой врезается дополнительный ригель (горизонтальная доска) Данный элемент равномерно передает нагрузку на все стойки каркасной стены.
19. В данном случае финский ригель позволяет не делать двойные стойки под оконные проемы (если они шириной менее 1400 мм). Отсутствие парных стоек позволяет уменьшить теплопотери стены.
20. Утепление конструкций производится только когда дом защищен от атмосферной влаги. На данных изображениях показаны узлы утепления Перекрытия и угловых стен (теплый угол)
21. Утеплитель монтируется с перехлестом, для того чтобы исключить теплопотери через стыки. С нижней стороны цокольного перекрытия монтируется ветрозащитная мембрана с верхней стороны пароизоляция.
22. Правильно уложенный утеплитель плотно примыкает к конструкциям каркаса и исключает продувание и промерзание перекрытия. Утеплитель находится и непосредственно под обвязкой стены, соответственно теплопотери в этом месте будут исключены.
23. Как было показано в п. 22 утеплитель в перекрытии обязательно должен быть непосредственно под стеной.
24. Утепление стен в углах монтируется между стойками с небольшим распором (утеплитель шириной 600мм, расстояние между стойками 585мм. Это исключает проседание утеплителя и обеспечивает надежное примыкание утеплителя к стойкам каркаса.
25. Конструкция теплого угла в разрезе.
Источник
Архитектура гражданских и промышленных зданий. Фундаменты
Новый сервис — Строительные ка лькуляторы online
Требования предъявляемые к фундаментам :
— устойчивость, на опрокидывание и скольжение в плоскости подошвы фундамента;
— устойчивость к агрессивным грунтовым водам;
— стойкость к атмосферным факторам (морозостойкость; пучение грунтов при замерзании);
— соответствие по долговечности сроку службы здания;
По конструктивной схеме фундаменты разделяются на: ленточные, столбчатые или отдельно стоящие, сплошные и свайные.
Стоимость фундаментов от общей стоимости здания составляет: с бесподвальным решением 8-10%; с подвалом 12-15%, а трудоемкость составляет 10-15%
Ленточные фундаменты
Монолитные ленточные фундаменты
В простейшем случае — прямоугольные. В большинстве случаев для передачи давления на основание, не превышающего нормативного давления на грунт, приходится уширять подошву фундамента.
Глубина заложения фундаментов должна соответствовать глубине залегания того слоя грунта, который можно принять за естественное основание.
Необходимо также учитывать глубину промерзания грунта.
Нормативная глубина промерзания указана в СниПе.
При пучинистых грунтах глубину заложения фундаментов следует считать ниже на 100 мм глубины промерзания.
В непучинистых грунтах глубина заложения фундамента не зависит от глубины промерзания.
Фундаменты из бутового камня не отвечают требованиям индустриального строительства (затруднена механизация работ, снижаются темпы строительства, особенно в зимнее время).
Применение бутобетонных и бетонных фундаментов позволяют шире использовать механизацию при их возведении.
Сборные ленточные фундаменты
Для наружных стен 400, 500, 600мм;
Высота фундаментного блока — 580 мм;
Шов для блоков — 20 мм
От одной глубины заложения монолитного ленточного фундамента к другой переходят постепенно с устройством уступов.
Отношение высоты уступа к его длине должно быть не более 1:2, причем высота уступа должна быть не больше 0,5м, а длина — не менее 1м.
На более прочных грунтах отношение высоты уступа к его длине допускается не более 1:1, а высота уступа — не более 1м.
Если здание возводится на сборных фундаментах, высоту уступа можно принимать равной высоте унифицированного блока, т.е. 0,6м; в этом случае длина уступа должна быть не менее 1,2 м.
Расстояние между осями швов — 600 мм (по высоте).
Блоки укладываются с перевязкой швов в шахматном порядке.
Длина — 1180 мм; 2380 мм (собачки) дополнительная толщина — 180 мм.
Фундаментные блоки со швами с железобетонным раствором, на железобетонных подушках высотою — 300 мм, шириною до 2.80 м.
Прерывистые фундаменты под несущие стены
Монолитные железобетонные пояса в районах с повышенной сейсмичностью.
Арматурные стержни + заливка бетоном 5-6 см.
Фрагменты монолитных участков: на углах в местах расположения коммуникаций.
Ленточные панельные фундаменты
В крупнопанельных зданиях отдельные блоки фундаментов и стен подвалов целесообразно заменять крупноразмерными элементами.
Они состоят из сквозных бескаркасных ферм (панелей и блоков или ребристых панелей — подушек).
Столбчатые фундаменты
Когда давление на грунт меньше нормативного, ленточные фундаменты целесообразно заменять столбчатыми.
Фундаментные столбы (бетонные или железобетонные) перекрывают железобетонными фундаментными балками, на которых возводятся стены.
Чтобы устранить выпирание фундаментной балки при пучении грунта, под ней устраивают подушку из песка или шлака толщиной 0,5 м.
Сплошные фундаменты
При слабых или неоднородных грунтах, а также при очень больших нагрузках на колонны во избежание неравномерной осадки фундаменты объединяют систему (ребристой) железобетонной плиты.
При сплошных фундаментах обеспечивается равномерная осадка, что особенно важно для каркасно-панельных и крупнопанельных зданий повышенной этажности.
Кроме того, он хорошо защищает подвалы от проникновения грунтовой воды при высоком ее уровне, когда пол подвала подвергается снизу большому гидростатическому давлению.
Свайные фундаменты
Они применяются, когда достижение естественного основания экономически или технически невыполнимо из-за большой глубины его заложения при значительных нагрузках, а также в других случаях.
Различают сваи-стойки (опирающиеся на толщину прочного грунта), висячие сваи, которые удерживаются в слабом грунте за счет его уплотнения и передают нагрузку на грунт трением, возникающем между сваей и грунтом.
В зависимости от способа погружения в грунт применяют забивные, набивные, буронабивные, сваи-оболочки, буроопускные и винтовые сваи.
Забивные железобетонные и деревянные сваи погружают с помощью копров, вибропогружателей и вибровдавливающих агрегатов.
Железобетонные сваи могут изготавливаться цельными и составными (из отдельных секций)
Деревянные забивные сваи устраивают там, где существуют постоянные температурно — влажностные условия.
Набивные сваи, устраивают методом заполнения бетонной или иной смесью предварительно пробуренных, пробитых или выштампованных скважин.
Нижняя часть скважин может быть уширена с помощью взрывов (сваи с камуфлетной пятой).
Буроопускные сваи отличает от набивных то, что в скважину устанавливают готовые железобетонные сваи с заполнением зазора между сваей и скважиной песчано-цементным раствором.
На верхние концы свай или на специальные уширения верхних концов (оголовки) укладывают «балки или плиты — ростверки.
Они применяются сборные (железобетонные) или монолитные.
В последнее время разработаны конструктивные решения свайных фундаментов «без ростверков.
В плане сваи могут состоять из одиночных свай — под опоры; лент свай — под стены с расположением в один или более рядов; кустов свай; сплошного свайного поля – под тяжелые сооружения.
Защита зданий от грунтовых вод
Для защиты стен бесподвальных зданий от капиллярной влаги во всех стенах в цоколе укладывают горизонтальную гидроизоляцию из 2-х слоев толя, рубероида или слоя жирного цементного раствора состава 1:2 толщиной 20-30 мм на 150-200 мм ниже уровня пола первого этажа и на 150-200 мм выше отметки тротуара или отмостки.
Фундаменты, находящиеся в агрессивной среде (при наличии в грунтовой воде агрессивных составов), выполняют из бетона на пуццолановом портландцементе и шлакопортландцементе, кроме случаев щелочной активности, когда можно применять цемент любых видов, кроме пуццоланового и шлакопортландцемента.
При напорах воды от 0,1 до 0,2 м для защиты подвала от проникновения воды под пол подвала укладывают слой мягкой жирной глины толщиной 250 мм и бетонную подготовку толщиной 100-200 мм.
Наружную поверхность стен изолируют штукатуркой цементным раствором с последующей обмазкой горячим битумом за 2 раза и забивкой слоем мягкой жирной глины толщиной 200-250 мм.
При напорах воды от 0,2 до 0,8 м возникает опасность всплывания пола, поэтому пол искусственно утяжеляют.
В этих случаях на грунт укладывают бетонную подушку толщиной 100-150мм, поверхность которой выравнивают цементным раствором или слоем асфальта толщиной 20-25 мм с последующей наклейкой по битумной или асфальтовой мастике гидроизоляционного ковра из 2-х или 3-х слоев рубероида, гидроизола, бризола.
Для предохранения этой части гидроизоляционного ковра от механических повреждений устраивают защитную стенку толщиной 120 мм из хорошо обожженного кирпича, выкладываемую на цементном растворе.
При больших напорах воды, когда уровень грунтовых вод превышает уровень пола подвала более чем на 0,8 м, пол устраивают в виде плоской железобетонной плиты, загруженной стенами дома, или в виде плиты с ребрами верх.
На плоскую железобетонную плиту, (а при ребристой — в промежутках между ребрами), укладывают тяжелый бетон, по которому устраивают чистый пол.
Эффективность применения того или иного типа фундаментов зависит от объема, стоимости, трудоемкости и расхода материалов
Свайные фундаменты экономичнее ленточных на 32-34% по стоимости, на 40% по затрате бетона и на 80% по объему земляных работ. Такая экономия позволяет снизить затраты стали увеличиваться — 1 — 3 кг на 1 м 2 .
Источник