Виды фундаментов неглубокого заложения
Введение
Во многих сферах строительства наиболее часто применяются фундаменты неглубокого заложения на естественном основании. К перспективному направлению их совершенствования можно отнести использование промежуточной подготовки переменной жёсткости в ленточных фундаментах. Другим направлением является использование рабочей боковой поверхности как ленточных, так и одиночных фундаментов. К таким фундаментам неглубокого заложения в связных маловлажных грунтах естественного сложения относятся щелевые, круглые, шлицевые, траншейные и одноплитные. Технология их устройства исключает обратную засыпку боковой поверхности и тем самым позволяет использовать боковое трение по их стенкам, чего нельзя достичь при устройстве в открытых котлованах столбчатых или ленточных фундаментов.
Опыт применения эффективных конструкций фундаментов неглубокого заложения на реальных объектах достаточно широк. Усовершенствованные технологии, внедряемые в строительную практику, предварительно испытывались как на моделях, так и на строительных площадках конкретных объектов в натуральную величину. Методика расчётов есть результат исследований, выполненных проектов фундаментов, запущенных в работу.
Для повышения экономической эффективности конструкций ленточных фундаментов необходимо уменьшение площади опорной монолитной ленты и снижение расхода металла при арматурных работах. Достигнуть этого позволяет применение подготовки переменной жёсткости(рис. 1, а). Подготовка представляет собой сплошной бетонный слой высотой 5-10 см, шириной 20-40 % от ширины подушки (ленты). По обе стороны промежуточной подготовки насыпается слой рыхлого песка такой же высоты. Подушка или монолитная лента устраиваются непосредственно на подготовке после набора прочности бетоном.
Данная конструкция фундамента передаёт начальную нагрузку на грунт основания через подошву бетонной подготовки. По мере нагружения фундамент дает усадку с одновременным уплотнением рыхлого грунта и при определённом значении нагрузки вся нижняя плоскость подошвы ленты вступает в работу. Происходит разгрузка консольных частей подушки (ленты). За счёт увеличения расчётного сопротивления грунта, появляется возможность уменьшить ширину, то есть площадь подушки (ленты). На фундаменте с промежуточной подготовкой в г. Кустанае возведен многоэтажный экспериментальный 144-квартйрный четырёхсекционный жилой дом, который нормально эксплуатируется. Детальное исследование и определение методики обеспечит широкое внедрение данной конструкции фундамента в строительной практике.
Щелевые фундаменты
К усовершенствованным фундаментам неглубокого заложения в связных маловлажных грунтах естественного сложения можно отнести также фундаменты с рабочей боковой поверхностью. Исключая из технологии обратную засыпку боковых поверхностей, мы используем боковое трение по стенкам, чего нельзя достичь при устройстве в открытых котлованах столбчатых или ленточных фундаментов. К таким фундаментам можно отнести щелевые, круглые, шлицевые, траншейные и одноплитные.
Достаточный объём проведенных исследований щелевых фундаментов показал их эффективность и простоту изготовления. Они представляют собой одну или две узкие бетонные (железобетонные) пластины в грунте, связанные ростверком для передачи нагрузки от надземных конструкций на сами пластины. Технология устройства заключается в нарезке баром (цепным или роторным щелерезом) узких щелей в грунте шириной 100 — 300 мм, глубиной от 1 до 3 м с последующим и заливкой бетонной смесью. Параметры щелевых фундаментов выбираются в зависимости от инженерно-геологических условий, значений расчётных нагрузок, типа и конструкции надземного сооружения. Применение щелевых фундаментов вместо ленточных на естественном основании целесообразно при отсутствии подвалов.
Особенность работы щелевых фундаментов заключается в следующем. Нагрузка на основание при однощелевом фундаменте (рис. 1, б) кроме подошвы ростверка передаётся боковыми плоскостями и торцом стенки. В двухщелевом фундаменте (рис. 1, в) заключённый между пластинами массив грунта также включается в работу, тем самым основная нагрузка передаётся в плоскости на уровне нижних торцов стенок. Оптимальное расстояние между стенками, соответствующее максимальной несущей способности фундамента, составляет 0,6 — 1,3 м. Заключённое между стенками грунтовое ядро, пластины и ростверк можно рассматривать как бетоногрунтовый фундамент на естественном основании, по высоте равный высоте рабочих стенок. Рассматриваемые однощелевые фундаменты предназначены для одно-, двухэтажных коттеджей, дач, гаражей, двухщелевые — для жилых и общественных зданий высотой до 7-ми этажей, о чём свидетельствует практика проектирования и строительства на таких фундаментах.
Круглые фундаменты
Технология устройства круглых фундаментов глубиной до 3 м, диаметром 0,6 — 1,2 м аналогична технологии устройства буронабивных свай. Однако, к сваям их отнести нельзя, так как у них отношение длины (высоты) к диаметру l/d≤ 5, что значительно превосходит число 10, по которому конструкцию относят к категории свай. Круглые фундаменты применяются под колонны железобетонных (рис. 1, г) и металлических (рис. 1, д) каркасов лёгких сооружений (заборов, складов, мастерских, гаражей, подсобных помещений). Как пример, можно привести круглые фундаменты, выполненные под неотапливаемые полносборные склады из профилированных стальных оцинкованных листов.
Одним из видов круглых являются фундаменты под опоры инженерных коммуникаций в виде железобетонных стоек, замоноличенных в буровых скважинах на всю их высоту. От забивных свай-опор они выгодно отличаются тем, что могут рихтоваться в плане и по высоте. Достигается это тем, что скважины выбуривают большего диаметра, чем сечение опор по диагонали (рис. 1, е). В случае перебуривания скважин в них до проектной отметки забоя засыпается и утрамбовывается песчано-гравийная смесь, в результате чего образовывается малосжимаемая подушка. Полости между стенками скважин и гранями опор (стоек-колонн) заполняются на всю высоту бетоном и уплотняются глубинным вибратором. Таким образом, достигается высокая точность прокладки таких коммуникаций как шинопроводы, топливопроводы, теплотрассы, кабельные трассы, компенсаторные участки трубопроводов.
Описание рисунка 2: а – шлицевый фундамент под трёхшарнирную раму; б — то же под железобетонную колонну; в — траншейный фундамент двутавровой формы; г — траншейный фундамент под осветительную мачту; д — одноплитный поджелезобетонную колонну.
Шлицевые фундаменты
Шлицевые фундаменты устраиваются ковшом в коротких траншеях (шлицах) с овальной формой подошвы длиной до 3 м, шириной 0,4 — 1,0 м, глубиной заложения до 3 м. Для разработки щлицов используются экскаваторы, в том числе с зауженным ковшом. Также могут быть использованы штанговые напорные грейферы для устройства заглубленных сооружений и противофильтрационных завес способом «стена в грунте». При использовании грейфера размеры шлица в плане будут соответствовать его наружным габаритам при максимальном раскрытии челюстей. Шлам со дна шлица удаляется скребковым приспособлением, уплотняется плоской частью ковша или сомкнутым грейфером путём создания максимального давления на забой шлица. Шлиц бетонируется враспор (без опалубки) одновременно с выполнением гнезда (рис. 2, а) или стакана (рис. 2, б). Шлицевые фундаменты наиболее рациональны при значительных наклонных, моментных и горизонтальных нагрузках. Поэтому их лучше всего использовать под сельскохозяйственные здания из трёхшарнирных рам, а также под промышленные здания вспомогательного назначения каркасного типа с металлическим или железобетонным каркасом.
Траншейные фундаменты
Траншейные фундаменты бетонируются в траншеях шириной 0,3 — 1,2 ми вертикальными стенками глубиной до 3 мразличной конфигурации в плане: крестовые, тавровые, двутавровые (рис. 2, в). Вертикальность стенок фигурных конструкций обеспечивается обрамлением фундамента в плане узкими щелями баровым рабочим органом, особенно в мёрзлых и прочных грунтах. Технология устройства аналогична технологии шлицевых фундаментов. Например (рис. 2, г), под стальные осветительные мачты высотой 28 м в мёрзлых грунтах были применены траншейные фундаменты размерами в плане 5×4 м сложной конфигурации с шириной траншей 0,6 м и глубиной 2,0 м.
Одноплитные фундаменты
Усовершенствованной конструкцией столбчатых фундаментов на естественном основании являются одноплитные фундаменты ( рис. 2, д). Их суть состоит в нарезке приямка прямоугольной или квадратной формы, с вырезами или срезами глубиной равной высоте плиты. Дно подчищается вручную, после чего приямок (плита) армируется и бетонируется. Вырезы и срезы в плитах служат для сокращения расхода материала и ослабления концентрации напряжений в грунтах основания. Для обеспечения арочного эффекта в местах прямоугольных вырезов их площадь не должна превышать 15 — 20 % площади плиты.
Выводы
Приведенные конструкции фундаментов до настоящего времени нормально эксплуатируются, что позволяет сделать вывод о их надёжности. Опробованную методику расчёта несущей способности рабочей боковой поверхности фундаментов неглубокого заложения можно рекомендовать к применению с дальнейшим усовершенствованием. Суть её заключается в следующем:
Нагрузку, воспринимаемую боковыми поверхностями описанных конструкций фундаментов, можно определить по формуле:
Т = m Ʃmf ui fi li ,
где m— коэффициент работы бетонной поверхности фундамента в грунте, принимаемый равным 0,9;
mf— коэффициент условий работы грунта по боковой поверхности фундамента, принимаемый для суглинков и супесей равным 0,7; для глин — 0,6 при устройстве фундаментов в летний период 0,5 и соответственно 0,4 — в зимний;
ui— периметр поперечного сечения фундамента или щелевой стенки (траншеи) на глубине hhм;
li— толщина i-го слоя грунта, соприкасающегося с боковой поверхностью фундамента (стенки, траншеи), м;
fi— расчётное сопротивление i-го слоя грунта по боковой поверхности фундамента, определяемое по табл. 1.
Расчётное сопротивление грунта по боковой поверхности фундамента
Глубина расположения слоя грунта от планировочной отметки hi, м
Расчётное сопротивление грунта по боковой бетонной поверхности фундамента fi,кПа, при показателе текучести грунта IL, равном
Источник
ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПОДОШВЫ ФУНДАМЕНТОВ МЕЛКОГО ЗАЛОЖЕНИЯ ПРИ ДЕЙСТВИИ ЦЕНТРАЛЬНОЙ И ВНЕЦЕНТРЕННОЙ НАГРУЗОК.
Фундаментом называют подземную часть здания, предназначенную для передачи нагрузки от здания на залегающие на некоторой глубину грунты основания.Подошвой фундамента называется его нижняя поверхность, соприкасающаяся с основанием; верхняя плоскость фундамента, на которую опираются наземные конструкции, называется обрезом. За ширину фундамента принимается минимальный размер подошвы b, а за длину – наибольший ее размер l. Высота фундамента hf есть расстояние от подошвы до обреза, а расстояние от поверхности планировки до подошвы называется глубиной заложенияd.
К фундаментам мелкого заложения относятся фундаменты, передающие нагрузку на грунты основания преимущественно через подошву. Они применяются в различных областях и инженерно-геологических условиях как в сборном, так и в монолитном вариантах (Таблица 6.2).Таблица 6.2
Области применения фундаментов мелкого заложения
Тип фундамента | Вид надземной конструкции |
Отдельные | Колонны, углы зданий, балки, фермы, арки, опоры рам и др. |
Ленточные | Стены зданий и сооружений, опорные рамы оборудования и др. |
Сплошные (плитные) | Высотные здания, заводские (фабричные) трубы, насосные станции и др. |
Массивные | Башни, мачты, мостовые опоры, колонны, станки и другое оборудование |
При центральной нагрузке форму отдельных фундаментов в плане рекомендуется принимать квадратной, а при внецентренной нагрузке – прямоугольной (с отношением сторон 0,6…0,85).
Независимо от грунтовых условий (кроме скальных грунтов) под фундаментами устраивают подготовку толщиной 100мм: под монолитными – бетонную, из бетона класса В3,5; а под сборными – из песка средней крупности. При возведении фундаментов на скальных грунтах по грунтовому основанию устраивают выравнивающий слой бетона класса В3,5.
Расчет фундамента мелкого заложения начинают с предварительного выбора его конструкции и основных размеров, к которым относятся глубина заложения фундамента, размеры и форма подошвы. Затем для принятых размеров фундамента производят расчеты основания по предельным состояниям.
Определение глубины заложения фундамента. Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения, поэтому естественно стремление принять глубину заложения как можно меньшей.
Рис. Схемы напластований грунтов с вариантами устройства фундаментов: 1- прочный грунт; 2-более прочный грунт; 3-слабый грунт; 4-песчанная подушка; 5-зона закрепления
— минимальная глубина заложения фундаментов принимается не менее 0,5 м от спланированной поверхности территории; глубина заложения фундамента в несущий слой грунта должна быть не менее 10. 15 см.
Глубина сезонного промерзания грунтов. df=khdfn, где kh – коэффициент, учитывающий влияние теплового
режима сооружения, dfn — нормативная глубина сезонного промерзания грунтов, м.
Определение формы и размеров подошвы фундаментов. Форма подошвы фундамента во многом определяется конфигурацией. При расчетах фундаментов мелкого заложения по второму предельному состоянию (по деформациям) площадь подошвы предварительно может быть определена из условия pП≤R, где pП – среднее давление по подошве фундамента, R – расчетное сопротивление грунта основания.
Данное условие должно выполняться с недогрузом: для монолитных фундаментов – £5%, для сборных – £10%.
Выполнение условия осложняется тем, что обе части неравенства содержат искомые геометрические размеры фундамента, в результате чего расчет приходится вести методом последовательных приближений за несколько итераций.
Предлагается такая последовательность операций при подборе размеров фундамента:
Þ задаются формой подошвы фундамента:
Если фундамент ленточный, то рассматривается участок ленты длиной 1м и шириной b.
Если фундамент прямоугольный, то задаются соотношением сторон прямоугольника в виде h=b/l=0,6…0,85. Тогда A=bl=b 2 /h, где A – площадь прямоугольника, l – длина, b – ширина прямоугольника. Отсюда . Частным случаем прямоугольника является квадрат, в этом случае
Þ вычисляют предварительную площадь фундамента по формуле:
, (6.5)
где NII – сумма нагрузок для расчетов по второй группе предельных состояний, кПа. В случае ленточных фундаментов это погонная нагрузка, в случае прямоугольных и квадратных – сосредоточенная нагрузка;
R0 – табличное значение расчетного сопротивления грунта, где располагается подошва фундамента, кПа;
g¢II – осредненное расчетное значение удельного веса грунтов, залегающих выше подошвы фундамента, кН/м 3 ;
d1 – глубина заложения фундаментов бесподвальных сооружений или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала:
(6.6)
где hs – толщина слоя грунта выше подошвы фундамента со стороны подвала, м;
hcf – толщина конструкции пола подвала, м;
gcf – расчетное значение удельного веса конструкции пола подвала, кН/м 3 ;
Þ по известной форме фундамента вычисляют ширину фундамента:
в случае ленточного фундамента b=A¢;
в случае квадратного фундамента ;
в случае прямоугольного и l=h/b.
После определения требуемых размеров фундамента необходимо в пояснительной записке запроектировать тело фундамента в виде эскиза с проставлением размеров. При этом размерами фундамента можно в небольших пределах варьировать из конструктивных соображений, изложенных в п.6.2.1. Только после уточнения всех размеров фундамента можно переходить к следующему пункту.
Þ по формуле (7) СНиП 2.02.01-83 вычисляют расчетное сопротивление грунта основания R:
,
Рисунок 6.6: К определению глубины заложения фундаментов
а – при d1 d; в- для плитных фундаментов
1- наружная стена; 2 — перекрытие; 3 — внутренняя стена; 4 — пол подвала; 5 — фундамент
Центрально нагруженный фундамент. Центрально нагруженным считают фундамент, у которого равнодействующая внешних нагрузок проходит через центр площади его подошвы. Реактивное давление грунта по подошве жесткого центрально нагруженного фундамента принимается равномерно распределеннымpII=(NoII+GfII+GgII)/A, где NoII — расчетная вертикальная нагрузка на уровне обреза фундамента; GfIIи GgII — расчетные значения веса фундамента и грунта на его уступах; А — площадь подошвы фундамента. В предварительных расчетах вес грунта и фундамента в объеме параллелепипеда АВСD, в основании которого лежит неизвестная площадь подошвы А, определяется приближенно из выражения GfII+GgII=γmAd где γm — среднее значение удельного веса фундамента и грунта на его уступах, d – глубина заложения фундамента, м.
А=NoII/(R-γmd). Рассчитав площадь подошвы фундамента, находят его ширину b. Ширину ленточного фундамента, для которого нагрузки определяют на 1 м длины. После вычисления значения b принимают размеры фундамента с учетом модульности и унификации конструкций и проверяют давление. Найденная величина рII должна быть по возможности близка к значению расчетного R.
Внецентренно нагруженный фундамент. Внецентренно нагруженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. Такое нагружение является следствием передачи на него момента или горизонтальной составляющей нагрузки. При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей определяют, как для случая внецентренного сжатия:
, (6.9)
где Mx, My – изгибающие моменты, относительно главных осей подошвы фундамента, кНм;
Wx, Wy – моменты сопротивления сечения подошвы фундамента относительно соответствующей оси, м 3 .
Эпюра давлений под подошвой фундамента, полученная по данной формуле должна быть однозначной, т.е. по всей ширине сечения напряжения должны быть сжимающими. Это вызвано тем, что растягивающие напряжения, в случае их возникновения, могут привести к отрыву подошвы фундамента от основания и будет необходим специальный расчет, который не входит в предусмотренный объем курсового проекта.
Внецентренно нагруженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей.рmax=(NII/A)(1±6e/b), где NII — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его уступах; А — площадь подошвы фундамента; е — эксцентриситет равнодействующей относительно центра тяжести подошвы; b — размер подошвы фундамента в плоскости действия момента.
Поскольку при внецентренном нагружении относительно одной из центральных осей максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы; фундамента его допускается принимать на 20% больше расчетного и сопротивления грунта, т.е. рmax≤1,2R Одновременно среднее давление по подошве фундамента, определяемое как рII=NII/A должна удовлетворять условию pII≤R.
В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей инерции прямоугольной подошвы фундамента, давление под ее угловыми точками находят по формуле.р с max=(NII/A)(1±6ex/l±6ey/b).
Поскольку в этом случае максимальное давление действует только в одной точке подошвы фундамента, допускается, чтобы его значение, удовлетворяло условию р с max≤1,5R. Проверка давления на подстилающий слой слабого грунта. При наличии и в пределах сжимаемой толщи основания слабых грунтов •или грунтов с расчетным сопротивлением меньшим, чем давление на несущий слой, необходимо проверить давление на них, чтобы уточнить возможность применения при расчете основания теории линейной деформируемости грунтов. Последнее требует, чтобы полное давление на кровлю подстилающего слоя не превышало его расчетного сопротивления, т.е. σzp+ σzg≤Rz
Где σzp и σzg — вертикальные напряжения в грунте на глубине z от подошвы фундамента (соответственно дополнительное от нагрузки фундамент и от собственного веса грунта); Rz — расчетное сопротивление грунта на глубине кровли слабого слоя, величину Rz определяют как для условного фундамента шириной bz, и глубиной заложения dz. Коэффициенты условий работы γС1, γС2 и надежности k, а также коэффициенты Мq, Mc находят применительно к слою слабого грунта. Ширину условного фундамента назначают с учетом рассеивания напряжений в пределах слоя толщиной z. Если принять, что давление действует по подошве условного фундамента АВ, то площадь его подошвы должна составлять Az=NoII/σzp, Зная Аz найдем ширину условного прямоугольного фундамента bz=(√Az+a 2 )-a, где а=(1-b)/2 (1 и b длина на и ширина подошвы проектируемого фундамента. Для ленточных фундаментов bz=Аz/1.
Расчет осадки.
Расчет оснований по деформациям производится исходя из условия (6.1):
где S – совместная конечная деформация (осадка) основания и сооружения, определяемая расчетом по указаниям приложения 2 СНиП 2.02.01-83, методика которого излагается ниже.
Su – предельное значение совместной деформации основания и сооружения, устанавливаемое по указаниям п.6.1.
Расчетная схема основания применяется в виде линейно-деформируемого полупространства с условным ограничением глубины сжимаемой толщи Нс. Схема распределения вертикальных напряжений в линейно-деформированном полупространстве приведена на рис.6.9.
Для расчета S используется метод послойного суммирования осадок, который допустимо применять в случаях, когда давление под подошвой фундамента pне превышает расчетное сопротивление грунта основания R.
Последовательность расчета осадок по методу послойного суммирования следующая:
а) на фоне геологического разреза (выполненного в масштабе) показать контуры проектируемого фундамента;
б) слева от оси фундамента построить эпюру вертикальных напряжений от собственного веса грунта (эпюру szg), используя формулу:
, (6.17)
где g¢– удельный вес грунта, расположенного выше подошвы фундамента;
dn – глубина заложения фундамента;
gi, hi – соответственно удельный вес и толщина i-го слоя грунта;
Удельный вес грунтов, залегающих ниже уровня подземных вод, но выше водоупора, должен приниматься с учетом взвешивающего действия воды:
(6.18)
Если в толще основания находится водонепроницаемый слой – глины твердые, полутвердые, тугопластичные, суглинки твердые и скальные нетрещиноватые породы, то на его кровлю передается давление от вышележащих грунта и подземных вод. Тогда на кровле водоупора возникает скачок напряжений на величину hwgw.
в) грунтовую толщу от подошвы фундамента вниз разбить на элементарные слои, мощность которых удобно принимать равной 0,2b или 0,4b. При разбивке не надо обращать внимание на границы слоев различных грунтов и на уровень грунтовых вод;
г) справа от оси от уровня подошвы фундамента построить эпюру дополнительных вертикальных напряжений (эпюру szp). Дополнительные вертикальные напряжения на глубине z от подошвы фундамента, определяются по формуле:
где a – коэффициент, принимаемый в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, равной x=2z/b;
p0=p-szg,0 – дополнительное вертикальное давление на основание (для фундаментов шириной b³10м принимается p0=p);
д) определить нижнюю границу сжимаемой толщи (НГСТ), которая находится на уровне, где выполняется условие szp=0,2szg. НГСТ удобно определять графическим способом, для чего справа от оси достаточно построить эпюру 0,2szg в том же масштабе, в котором построена эпюра szp. Точка пересечения эпюр szp и 0,2szg определит НГСТ;
е) рассчитать осадку по формуле:
, (6.20)
где b – безразмерный коэффициент, равный 0,8;
szp,i – среднее значение дополнительного вертикального нормального напряжения в i-том слое грунта, равное полусумме указанных напряжений на верхней zi-1 и нижней zi границ слоя по вертикали, проходящей через центр подошвы фундамента;
hi, Ei – соответственно толщина и модуль деформации i-того слоя грунта; если в i-тый слой входит два геологических слоя, то Ei принимать по тому слою, мощность которого в i-том слое больше;
n – число слоев, на которое разбита сжимаемая толща основания.Рисунок 6.9: Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве:
DL – отметка планировки; NL – отметка поверхности природного рельефа; FL — отметка подошвы фундамента; WL – уровень подземных вод; B.C – нижняя граница сжимаемой толщи; d и dn – глубина заложения фундамента соответственно от уровня планировки и поверхности природного рельефа; b – ширина фундамента; p – среднее давление под подошвой фундамента; p0 – дополнительное давление на основание; szg и szg,0 – вертикальное напряжение от собственного веса грунта на глубине z от подошвы фундамента и на уровне подошвы; szp и szp,0 – дополнительное вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы.
Дата добавления: 2016-05-11 ; просмотров: 18017 ;
Источник