Водонасыщенные слабые грунты фундаменты

1. Слабые грунты как основания зданий и сооружений

Слабыми принято называть молодые (в геологическом понимании) наносы различного состава и генезиса, которые не получили в естественных условиях достаточного уплотнения. Понятие слабый грунт в современной технической литературе трактуется довольно широко. По условиям образования и залегания эти грунты можно разбить на три группы: морские и озерные отложения образующие слоистые толщи (пески, супеси, суглинки, глины, органогенные и минеральные илы); покровные отложения, залегающие на плоских участках, на склонах и под склонами (торфяники, глинистый элювий коренных пород, размоченный лёсс, делювиальные отложения склонов, пролювий конусов выноса); техногенные отложения, залегающие в форме бугров, терриконов или во впадинах рельефа, в оврагах, карьерах в форме карманов (городская свалка, культурные слои старых городов, отвалы промышленных отходов, накопления хвостохранилищ и т.п.).

Слабые грунты особенно широко распространены в районах северо-запада СССР, в недавнем геологическом прошлом освободившихся от ледникового покрова последнего континентального оледенения, в условиях избыточного увлажнения и затрудненного стока подземных и поверхностных вод. Эти грунты образуют залежи на дне и по берегам морей и озер, в поймах и дельтах рек, на заболоченных водоразделах. Суммарная мощность толщ слабых грунтов сравнительно невелика, обычно не более 20—30 м; в ряде районов она достигает 50 м. Слабые грунты обычно водонасыщены, имеют весьма высокую влажность ( ω > ωL ),большую пористость и весьма большую сжимаемость; они чувствительны к воздействию вибрации и других факторов, связанных со строительным производством.

Читайте также:  Кирпичного фундамента при пожаре

На территории многих городов северо-запада СССР, в частности Ленинграда, слабые грунты распространены почти повсеместно. Здания и сооружения, построенные в этих городах еще в дореволюционное время на ленточных фундаментах из бутового камня, а также на коротких деревянных сваях, получили осадки порядка десятков сантиметров. Развитие осадки продолжалось в течение многих лет после завершения строительства и обычно приводило к повреждениям кладки стен.

В условиях слабых грунтов современные крупнопанельные каркасные и кирпичные дома возводят на сваях, которые погружают в плотный подстилающий грунт. Длина таких свай обычно составляет 9—15 м, а под некоторыми зданиями — 32 м [28]. Однако и длинные сваи по ряду причин не гарантируют от возможного развития неравномерных осадок [32].

2. Устройство фундаментов в условиях существующей застройки на слабых глинистых грунтах

Слабые глинистые грунты — глины, суглинки, супеси, имеют высокую влажность ( ω > 0,5), большую пористость ( е > 1), модуль деформации примерно 1 — 10 МПа, низкую водопроницаемость [7]. При воздействии вибрации прочность этих грунтов понижается, т.е. проявляются тиксотропные свойства. Осадки зданий, возведенных на таких грунтах, развиваются в течение десятков лет и достигают больших величин. В районах северо-запада нашей страны распространены ленточные глины — поздние и послеледниковые отложения пресноводных бассейнов. Эти грунты имеют характерную (ленточную) текстуру; т.е. состоят из большого числа тонких слоев песчаного и глинистого материала, ритмично сменяющих друг друга, поэтому водопроницаемость грунта по вертикали (поперек слоистости) значительно меньше, чем по горизонтали. Распределение влажности в толще ленточных глин закономерно (рис. 6.1): в середине толщи влажность заметно больше, чем в периферийных частях, поэтому грунт на глубине 2—3 м и более заметно слабее залегающего у поверхности. Ленточные глины обладают большой пучинистостью при промораживании.

Читайте также:  Земляной фундамент для дома

Кроме того, эти глины особенно чувствительны к перемятию, т.е. резко изменяют свойства при различных технологических воздействиях. Поэтому, как рекомендовал в свое время Б.Д. Васильев, при разработке котлованов в этих грунтах требуется применять особые меры предосторожности (см. гл. 5). Разработка котлованов возле фундаментов на ленточных глинах весьма опасна.

Дополнительные осадки фундаментов на ленточных глинах могут быть учтены расчетом при проектировании. При этом, как показывает опыт, следует использовать результаты лабораторных испытаний, принимая значения коэффициента сжимаемости грунта в том диапазоне компрессионной кривой, который соответствует изменению напряженного состояния основания при возведении нового здания.

Ленточные глины в большой степени подвержены морозному пучению, поэтому при зимнем производстве работ в котлованах, вскрывающих ленточные глины, необходимо надежно утеплять существующие фундаменты. Для предотвращения выдавливания глины из-под подошвы фундаментов старых домов следует, как правило, применять технологический шпунт, погружаемый на 2—4 м ниже дна котлована.

Если строительный котлован разрабатывается ниже подошвы существующих фундаментов, применение ограждающего шпунта обязательно. Шпунт должен быть рассчитан не только по устойчивости, но и по деформациям. Для этой цели можно использовать методику, разработанную в ЛИСИ [8].

Сваи и шпунты легко проникают в ленточные глины, поэтому суммарное динамическое воздействие на основание бывает сравнительно невелико. Известны случаи, когда для проходки слоя ленточных глин толщиной 5 м требовалось всего 30—40 ударов механического молота [18]. Однако сваи и шпунты, ближайшие к существующему фундаменту, должны отстоять от него не менее чем на 2 м, а фронт свайных работ должен быть направлен в сторону существующих фундаментов [6].

При разработке проектов фундаментов при наличии ленточных глин необходимо иметь данные детальных изысканий, достоверно устанавливающих глубину заложения подошвы фундаментов существующих зданий по всей линии примыкания. Если в материалах изысканий эти данные отсутствуют, возможен выпор грунта. К примеру, в Ленинграде на ул. Куйбышева в 1978 г. при разработке котлована для устройства фундамента здания цеха возле заселенного трехэтажного дома в последнем образовались опасные деформации. Оказалось, что этот дом состоял из двух частей разновременной постройки: в одной части подошва фундаментов была заглублена на 0,5 м больше, чем под другой, где фундамент при изысканиях был вскрыт шурфом. В результате развился выпор грунта, жильцы были в срочном порядке выселены и здание разобрано, так как из-за полученных повреждений его капитальный ремонт оказался невозможен.

3. Устройство фундаментов вблизи зданий, возведенных на водонасыщенных рыхлых песках

Водонасыщенные рыхлые пески (аллювиальные, озерно-морские и другие) в условиях статического нагружения не получают больших деформаций, поэтому осадки зданий высотой, до 6—7 этажей на этих грунтах обычно не имеют опасного развития. Однако выполнение строительных работ в непосредственной близости от таких зданий может существенно изменить картину. Например, в районе Большой Охты в Ленинграде в 1979 г. при разработке котлована и забивке свай два здания, постройки 60-х годов получили сильные повреждения из-за неравномерной дополнительной осадки водонасыщенных песков (рис. 6.2).

Сваи, погружаемые вибрированием или забивкой (механическим молотом, дизель-молотом) в рыхлые водонасыщенные пески, должны располагаться на достаточном удалении от существующих фундаментов. Исследования, проведенные ВНИИГСом и ГПИ Фундаментпроект, показали, что безопасным является расстояние 20 м [11]. Большее приближение к существующему фундаменту требует проведения специальных виброметрических исследований при проведении инженерно-геологических изысканий и виброметрического контроля в период свайных работ.

На участке, приближенном к существующим фундаментам, уместно применение свай, погружаемых вдавливанием, а также винтовых и буронабивных свай. Разбуривание полостей для устройства буронабивных свай, даже под глинистым раствором, в рыхлых водонасыщенных песках около существующих фундаментов небезопасно. В этих условиях наиболее рационально применение стальных обсадных труб, оставляемых в скважинах, и подводное бетонирование без откачивания воды из полости. Такой метод был успешно использован в Ленинграде при устройстве фундаментов здания гостиницы «Москва» в непосредственной близости от ранее возведенной станции метрополитена (проект Ленинградского отделения ГПИ Фундаментпроект).

В водонасыщенных рыхлых песках применение глубинного водоотлива при наличии зданий возле котлована является нежелательной мерой, так как понижение уровня подземных вод на длительный период времени вызывает уплотнение грунта и развитие дополнительной осадки. В силу этих причин применение постоянных дренажных устройств на застроенных территориях, приводящие к понижению уровня подземных вод на несколько метров, недопустимо (см. гл. 1).

Сотников С.Н. Проектирование и возведение фундаментов вблизи существующих сооружений

Источник

4 Строительство в слабых водонасыщенных грунтах

Тема 4. Строительство в слабых водонасыщенных грунтах.

4.1 Принцип расчёта и проектирования оснований.

К слабым водонасыщенным грунтам относят насыщеннные водой сильносжимаемые грунты, которые при обычных скоростях приложения нагрузок на основание теряют свою прочность, вследствие чего уменьшается их сопротивление сдвигу и возрастает сжимаемость. Слабый глинистый грунт – это дисперсная структурированная система с коагуляционным типом структурных связей, способная при их нарушении переходить из твердообразного состояния в жидкообразное. Текучее состояние грунта определяется степенью нарушения структурных связей. При расчете осадок сильносжимаемых водонасыщенных глинистых оснований возникает необходимость учета ползучести, нелинейной деформируемости и проницаемости. Цикличность приложения нагрузок, например, в элеваторах, изменяет прочностные и деформационные свойства грунтов оснований во времени. Неравномерная загрузка отдельных силосов приводит к значительным неравномерным деформациям. Специалисты рекомендуют проводить равномерную первичную загрузку и разгрузку элеваторов.

Часто к слабым водонасыщенным относят глинистые грунты (илы, ленточные глинистые грунты, водонасыщенные лессовые макропористые и заторфованные грунты и др.) при Е ≤ 5 МПа и sr ≥ 0,8, ϕ = 4 … 10°, с = 0,006 … 0,025 МПа.

Значение коэффициентов фильтрации в вертикальном и горизонтальном направлениях отличаются до 10 раз. Общая осадка подразделяется на часть, описываемую теорией фильтрационной консолидации, и часть, описываемую процессами вторичной консолидации.

При проектировании фундаментов мелкого заложения необходимо ограничить:

• средние осадки предельными величинами;

Рекомендуемые файлы

• относительные разности осадок соседних фундаментов предельными значениями;

• скорости протекания осадок допустимыми.

При прохождении сейсмических волн через слабый водонепроницаемый грунт возникает поровое давление и снижаются прочностные характеристики грунта. В этих условиях рекомендуется применять сваи-стойки с полной прорезкой слабых грунтов и опиранием на прочный. Кроме того, возможно применение песчаных подушек, дренажных прорезей с пригрузочными насыпями, известковых свай с последующим уплотнением грунтов тяжелыми трамбовками.

В случае, когда методы уплотнения и упрочнения не дают эффекта, а осадка превышает предельную, необходимы конструктивные мероприятия. К ним относятся: повышение жесткости зданий путем разрезки осадочными швами на отдельные блоки; повышение жесткости каждого блока устройством монолитных железобетонных или сборно-монолитных фундаментов; устройство железобетонных или металлических поясов или армированных швов; устройство жестких диафрагм, например, горизонтальных из плит; повышение гибкости и податливости гибких зданий и сооружений.

Осадки фундаментов вычисляются с использованием расчетных схем в виде линейно-деформированного пространства или линейно-деформи-руемого слоя. Границу сжимаемой толщи определяют на такой глубине, где дополнительные напряжения равны 3 кПа – для илов, а для заторфованных грунтов на глубине, где дополнительное к природному давление равно структурной прочности.

Дополнительную осадку фундаментов на основаниях, сложенных водонасыщенными или органо-минеральными грунтами за счет разложения органических включений допускается не учитывать, если в период срока службы сооружения, уровень грунтовых вод не будет понижаться

4.2 Способы уплотнения оснований.

Фильтрующая пригрузка. Эффективно предпостроечное уплотнение слабых водонасыщенных грунтов. С этой целью устраивают фильтрующую пригрузку. Время уплотнения водонасыщенного грунта почти прямо пропорционально квадрату расстояния до дренажной поверхности. Для сокращения расстояния движения отжимаемой воды устраивают вертикальные песчаные дрены диаметром 0,4 … 0,6 м с расстоянием друг от друга 2,5 м. Вертикальные дрены поверху объединяют песчаной фильтрационной подушкой толщиной 0,6 … 1 м.

При толщине слабых глинистых грунтов до 7 м могут быть эффективны дренирующие прорезы в виде траншей шириной 0,6… 0,8 м и глубиной до 5,5 м. Траншеи заполняются песком, а над ними отсыпается горизонтальная подушка. Сплошные дренажные прорези устраивают там, где имеется дешевый дренирующий грунт.

В ряде случаев экономично применение дрен из искусственных материалов, например, картонные дрены. Их изготовляют из непроклееного трехслойного картона с поперечным сечением 3 × 100 мм. Коэффициент фильтрации картонной дрены составляет 10-3… 10-1 см/с, это в 100 … 1000 раз больше коэффициентов фильтрации слабого водонасыщенного грунта.

Конечная осадка слоя биогенного грунта или ила в стабилизированном состоянии, обусловленном намытым и отсыпанным слоем песка, вычисляют по формуле

где p – давление от песчаного грунта на поверхность слабого водонасыщенного биогенного грунта или ила, кПа; h – толщина слоя биогенного грунта или ила; E – модуль деформации биогенного грунта или ила при полной влагоемкости, кПа.

Осадка сильносжимаемого грунта зависит от сроков консолидации и от дренирования основания. Осадка недренированного основания пригруженного фильтрующей насыпью в заданный момент времени.

Песчаные подушки. На практике для снижения величины и неравномерности осадок фундаментов часто устраивают песчаные подушки толщиной до пяти метров. С их помощью удается уменьшить глубину заложения фундаментов и распределить давление на большую площадь, уменьшить размеры фундаментов. Песчаные подушки устраивают из средне- и крупнозернистых песков, щебня, гравия, гравийно-песчаной смеси.

Известковые сваи. В ряде случаев целесообразно применять известковые сваи. В толще грунтов под защитой обсадных труб пробуривают скважины диаметром 30 … 50 см. Их заполняют негашеной комовой известью слоем около одного метра. В обсадную трубу спускают трамбовку массой 300 … 400 кг и производят уплотнение. Снова насыпают слой извести и утрамбовывают и т.д.

Грунт уплотняется при погружении трубы и после трамбования извести. При взаимодействии негашеной извести с поровой водой происходит гашение. Вследствие этого увеличивается диаметр известковой сваи на 60 … 80 % и дополнительно уплотняется грунт вокруг сваи. Кроме того, при гашении извести выделяется большое количество тепла. Температура поднимается до 200 °С. Вследствие чего влажность окружающего грунта уменьшается, а прочностные характеристики увеличиваются. Далее производят поверхностное уплотнение грунта тяжелыми трамбовками.

Песчаные сваи устраивают путем забивки в грунт металлической трубы с закрытым концом. Полость заполняют песком с тщательным уплотнением. Вокруг ствола сваи образуется уплотненная зона слабого грунта диаметром до полутора метров (при диаметре сваи 0,4 … 0,5 м).

Электрохимическая обработка. В практике иногда применяют электрохимическую обработку грунтов для повышения несущей способности оснований сооружений, создания ограждений при проходке котлованов и траншей, борьбы с морозным пучением, с оползнями. Они используются для упрочнения всех видов грунтов с коэффициентом фильтрации менее 0,5 м/сут (мелких и пылеватых песков, супесей, суглинков, глин, илов, разложившегося торфа). Электрохимическая обработка подразделяется на: электроосушение, электролитическую обработку и электросиликатизацию. Долговременное необратимое упрочнение можно получить при введении химических добавок.

Упрочнение грунта происходит благодаря электрохимическим и структурообразовательным процессам, происходящим в глинистом грунте при пропускании постоянного электрического тока и введении электролитов.

Свайные фундаменты. Их применяют при сравнительно небольшой толщине слабых грунтов (до 12 м), подстилаемых прочными. Сваями прорезают полностью слабый грунт с опиранием на прочный. При забивке свай резко возрастает поровое давление, вследствие чего снижается несущая способность сваи. Со временем поровое давление снижается практически до нуля, а несущая способность сваи возрастает.

В условиях слабого глинистого основания возможно проявление отрицательного трения. Оседающий вокруг сваи грунт нагружает ее. Величина отрицательного трения может достигнуть 500 кН.

Причинами этого могут быть:

• планировка площади подсыпкой;

• загружение поверхности длительно действующими полезными нагрузками;

• пригружение слабых грунтов в пределах проездов и улиц периодическими подсыпками при ремонте дорожных покрытий;

• изменение плотности грунтов в результате понижения уровня грунтовых вод;

• динамические воздействия на грунт тяжелого транспорта и промышленных установок;

• проявления процессов, приводящих к постоянному уплотнению молодых слабых грунтов.

Отрицательные силы трения учитывают до глубины, на которой значения осадки околосвайного грунта превышают половину предельного значения осадки фундамента. Расчетные сопротивления грунта fi принимают для торфа, ила, сапропеля fi =5 кПа.

Если в пределах сваи залегают напластования торфа толщиной более 30 см и возможна пригрузка территории около фундамента, то расчетное сопротивление fi для грунта, расположенного выше подошвы низшего слоя торфа принимают:

а) при подсыпках высотой до двух метров, для грунтовой подсыпки и слоев торфа равным 0, для минеральных грунтов природного сложения – по табл.;

б) при подсыпках от двух до пяти метров – для грунтов, включая подсыпку равным 0,4f, но со знаком «–», для торфа – (–5кПа);

в) при подсыпках более пяти метров – для грунтов, включая подсыпку – по, но со знаком «–», для торфа – (–5 кПа).

В пределах нижней части свай, где осадка околосвайного грунта после возведения и загрузки фундамента меньше ½ [su], где su – предельная осадка, расчетные значения fi принимают положительными по, а для торфа, ила, сапропеля – 5 кПа.

В случае, когда консолидация грунта от подсыпки завершилась, сопротивление грунта по боковой поверхности сваи допускается принимать положительным вне зависимости от наличия прослоек торфа, для которых f = 5 кПа.

При забивке свай в слабые грунты прочность последних снижается из-за разрушения структурных связей и перераспределения воды в порах грунта. Время «отдыха» свай, соответствующее упрочнению грунта, t ≈ 1,5Ip (Ip – число пластичности). Для повышения несущей способности сваи на их стволе делают уширение в верхней, средней частях и на уровне нижнего конца. В последнем случае расчет свай по прочности ствола должен производится с учетом продольного изгиба. При осадке слабой грунтовой толщи проявляется отрицательное трение.

Для уменьшения сил отрицательного трения применяют специальные обмазки. В практике возможны следующие случаи:

сильно сжимаемый слой расположен с поверхности; на некоторой глубине находится слой сильно сжимаемого грунта, перекрытый

более прочными; толща состоит из перемежающихся пластов сильносжимаемых и сравнительно малосжимаемых грунтов.

При критических градиентах напора и скоростях фильтрации возможен фильтрационный выпор грунта. В практике наблюдается контактный размыв грунта фильтрационным потоком, идущим вдоль двух смежных слоев различной крупности. Для связных грунтов различают следующие фильтрационные деформации: суффозия, выпор, контактный выпор, отслаивание и контактный размыв.

Метод интенсивного ударного уплотнения. В практике гидротехнического строительства используют метод интенсивного ударного уплотнения слабых водонасыщенных грунтов, имеющий две разновидности: метод динамической консолидации и метод ударного разрушения (Ю. К. Зарецкий, 1989).

Работы по динамической консолидации выполняют по многоэтапной схеме с длительными (до месяца) перерывами между этапами, в течении которых рассеивается поровое давление. Расстояние между кратерами применяют равным 2 … 5 диаметрам.

При этом удары в соседней точке не должны нарушать достигнутого эффекта в предыдущей. Трамбовки применяют массой до 20 т при высоте сбрасывания до 30 м. Л. Менард объяснил механизм динамической консолидации положительной ролью содержащегося в порах газа и процессами сжижения.

Метод ударного разрушения применяют к грунтам с относительно невысоким водонасыщением. Уплотнение их не связано с необходимостью отжатия воды. Длительность между этапами здесь не существенна. Расстояние между центрами соседних лунок значительно меньше, чем при длительной консолидации.

Основным расчетом по деформациям является определение неравномерности осадок (прогиб, выгиб, перекос, крен, скручивание). Скорость развития осадок во времени ограничивается предельными значениями

Для закрепления слабых грунтов применяют: одно- и двухрастворную силикатизацию, смолизацию, одно- и двухрастворную электросиликатизацию, электролитическую обработку, электроосушение.

4.3 Разжижение водонасыщенных грунтов.

Явление разжижения заключается в полной или частичной потере грунтом несущей способности и переходе его в текучее состояние в результате разрушения структуры и смещения частиц относительно друг друга. Необходимыми условиями разжижения являются: разрушение структуры (часто при динамических воздействиях), возможность упрочнения грунта и полное насыщение его водой. Возможность разрушения структуры определяется интенсивностью воздействий, начальным напряженным состоянием и плотностью сложения грунта. Время консолидации (уплотнения) и пребывания грунтов в разжиженном состоянии определяется водопроницаемостью грунта, изменением его прочности, длиной пути фильтрации. Состояние разжижения присуще всем рыхлым водонасыщенным пескам любой прочности.

Разжижение невозможно, если

где ηр – расчетное ускорение колебаний; ηкр – то же, критическое, определяемое экспериментально (например, по данным виброкомпрессионных испытаний).

Мероприятия по борьбе с разжижением разделяют на два вида: предотвращение возможности разжижения и уменьшение последствий разжижения. К первому относят уплотнение несвязных грунтов и устройство пригрузок. Для уменьшения смещений разжиженных масс грунта используют ускорение процесса их консолидации. Время пребывания грунта в разжиженном состоянии можно регулировать с помощью вертикальных и горизонтальных дренажей.

4.4 Реологические процессы в грунтах, ползучесть.

Наиболее ярко это свойство проявляется в глинистых грунтах. Осадки зданий или сооружений продолжаются десятками, а иногда и сотнями лет. Деформации ползучести в песках значительно меньше. При сдвиговых деформациях различают (в зависимости уровня нагрузки) стадии затухающей, установившейся ползучести и прогрессирующего течения. Проектирование сооружений в грунтах с ярко выраженными свойствами ползучести осуществляют двумя путями: не допустить возникновение ощутимых деформаций ползучести и (А. Я. Будин) ограничивать деформации смещения допустимыми значениями в течение заданного срока эксплуатации.

Прочность грунта, полученную в обычных относительно кратковременных испытаниях, называют стандартной. В случае длительного действия нагрузки разрушение происходит раньше (τt = f (t) ). Для отдельных глин предел длительной прочности снижается до 30 %. Со временем грунт под подошвой упрочняется, а при установившейся ползучести разупрочняется. При деформациях форм, изменениях (сдвигах) в одних условиях (значения начальной прочности), грунт уплотняется, в других – разрыхляется. Пористость грунта, при которой в результате деформаций сдвига не происходит изменение объема, т.е. начальная и конечная пористость (n0 и n) равны, называют критической ncr.

4.5 Фундаменты на заторфованных грунтах.

Встречаются торфы с поверхности водонасыщенные неуплотненные, погребенные слабоуплотненные, погребенные в толще природных грунтов.

Торф отличается: большой сжимаемостью, малым сопротивлением сдвигу, значительной усадкой при осушении, ярко выраженными реологическими свойствами.

Получили распространение следующие способы инженерной подготовки территории: выторфовывание (полное удаление торфа и замена его минеральным грунтом); осушение (длительный процесс, сопровождающийся большими осадками поверхности);

Если Вам понравилась эта лекция, то понравится и эта — 22 Философия эпохи эллинизма.

намыв территории песчаным грунтом с понижением уровня подземных вод различными дренажными системами, частичная или

полная прорезка грунта глубокими фундаментами.

Расчет оснований, сложенных биогенными грунтами должен производиться с учетом скорости передачи нагрузки, изменения эффективных напряжений в грунте в процессе консолидации основания и анизотропии свойств грунтов.

Опирание фундаментов на поверхность заторфованных грунтов не допускается. При полной застройке намытых территорий рекомендуется выполнять геологическое районирование. Грунты, одинаковые в производственном отношении, объединяются в комплексы.

Источник

Оцените статью